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Abstract 
 
This paper presents a predominantly oral-history account of the development of the 

Gaussian copula family of models, which are used in finance to estimate the 

probability distribution of losses on a pool of loans or bonds, and which were 

centrally involved in the credit crisis.  The paper draws upon this history to examine 

the articulation between two distinct, cross-cutting forms of social patterning in 

financial markets: organizations such as banks; and what we call ‘evaluation cultures’, 

which are shared sets of material practices, preferences and beliefs found in multiple 

organizations.  The history of Gaussian copula models throws light on this articulation, 

because those models were and are crucial to intra- and inter-organizational co-

ordination, while simultaneously being ‘othered’ by members of a locally dominant 

evaluation culture, which we call the ‘culture of no-arbitrage modelling’.  The paper 

ends with the speculation that all widely-used derivatives models (and indeed the 

evaluation cultures in which they are embedded) help to generate inter-organizational 

co-ordination, and all that is special in this respect about the Gaussian copula is that 

its status as ‘other’ makes this role evident.  
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Given how crucial mathematical models are to financial markets, surprisingly little 

research has been devoted to how such models develop and why they develop in the 

way that they do.  The work on models by researchers on finance influenced by 

science studies (work that forms part of the specialism sometimes called ‘social 

studies of finance’) has focussed primarily on the ‘performativity’ (Callon 1998 and 

2007) of models, in other words on the way in which models are not simply 

representations of markets, but interventions in them, part of the way in which 

markets are constituted.  Models have effects, for example on patterns of prices.  

However, vital though that issue is – we return to it at the end of this paper – 

exclusive attention to the effects of models occludes the prior question of the 

processes shaping how models are constructed and used.  

 

This paper reports research begun by the first author in 2006 on a class of 

models known as ‘Gaussian copulas’, which are used in finance to model losses on 

pools of loans and to evaluate collateralized debt obligations (CDOs), which are 

securities based on pools of debt.  (The second author independently began research 

in 2009 on the use of similar models by ratings agencies.)  The original motivation 

was to examine how the Gaussian copula family of models had developed and how 

they were used, especially in investment banking.  The reason for selecting those 

models was that it was already clear in 2006 that (especially via their role in the 

evaluation of CDOs) they were of considerable practical importance.  In 2007, 

however, that original research was overtaken by the outbreak of the credit crisis, a 

crisis in which Gaussian copula models were implicated.  
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In February 2009, journalist Felix Salmon wrote that the Gaussian copula had 

‘killed Wall Street’ and ‘devastated the global economy’.  Its author, ‘math wizard … 

David X. Li … won’t be getting [a] Nobel [prize] anytime soon’, wrote Salmon.  ‘Li’s 

Gaussian copula formula will go down in history as instrumental in causing the 

unfathomable losses that brought the world financial system to its knees’ (Salmon 2009).  

Although Salmon’s highly personalized focus on Li was, as we shall see, quite misplaced, 

he was right to devote attention to Gaussian copulas.  Their involvement in the most 

serious economic crisis for the better part of a century had the effect of slowing our 

research: it made it necessary to set aside our more general work on the history of the 

Gaussian copula and concentrate on disentangling its role in the crisis, especially via its 

use in rating agencies.  With that work now completed (author ref., the findings of which 

are briefly summarised in the penultimate section below), we return in this paper to the 

original goal of examining the development of the Gaussian copula family of models and 

their uses in investment banking.  

 

Fortunately, we are able to control the ‘hindsight bias’ that arises from the 

involvement of these models in the crisis by the fact that of the 95 interviews we are 

drawing on, 29 took place before the onset of the crisis in July 2007.  These 94 interviews 

form the primary empirical basis of this paper; also drawn on is the extensive technical 

literature on Gaussian copulas.  We draw here primarily on the subset of interviews 

(numbering 24) that were with ‘quants’, in other words specialists in financial modelling.  

Those interviews took a broadly oral-history form: we led each interviewee through those 

parts of their career that bore upon the Gaussian copula or similar models and their uses.  

Because of the sensitivity of the topic, nearly all the interviews on which we draw have to 

remain anonymous.  The exception is our interview with the originator of the Gaussian 
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copula family of models, Oldrich Vasicek, conducted in October 2001 as part of an 

earlier project (author ref.): given Vasicek’s specific role, anonymity is impossible.  We 

were unable to interview Salmon’s focus, David X. Li, but were able to put questions to 

him by email. As with Vasicek, his role also makes anonymity impossible.  

 

Our analytical focus is on the ‘material cultures’ of modelling.1 Of the two 

words, our attention to the material is the more easily explained.  Models are not 

mathematical abstractions: their use involves material processes.  This is the case 

even for those models simple enough to be solved by mental arithmetic: the brain, 

after all, is a material organ. In fact, though, no member of the Gaussian copula 

family is simple enough to be solved in this way, and only one member of the family 

(Vasicek’s original model) can be solved using only the mathematician’s traditional 

tools of pencil, paper and mathematical tables.  All other members require digital 

computation, indeed extensive computation.  This is not merely an incidental fact 

about Gaussian copulas, but an important shaping factor, bearing, for example, on 

their use in communication among participants in financial markets.  In focussing on 

the materiality of models, we are elaborating upon a theme already present in the 

social-studies-of-finance literature of models, notably in the emphasis placed by 

Beunza and Stark (2004) and Beunza and Muniesa (2005) on the role of the ‘spread 

plot’ and other material representations of models, and the discussion by Lépinay 

(2011) of their information-technology implementations and their bodily 

communication.2  

                                                
1 Space considerations mean that we focus in this introduction only on previous, broadly science-
studies, work on models in finance, and do not attempt to review the wider science-studies literature on 
modelling, the best introduction to which remains Morgan and Morrison (1999). 
2 Lépinay observes: ‘To illustrate problems involving mathematical derivatives, the fingers of each 
hand come together, and the fingertips of one hand touch the fingertips of the other like two electric 
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Our invocation of ‘cultures’ requires greater elaboration, even though in 

invoking ‘culture’ we are following well-established usage in science studies.  The 

term has been employed there to capture the pervasive finding that scientific practices 

(even within the same discipline at the same point in time) are not uniform: there are 

different ‘local scientific cultures’ (Barnes, Bloor and Henry, 1996; Bloor 2011), 

‘experimental cultures’ (Rheinberger, 1997), ‘epistemic cultures’ (Knorr Cetina, 

1999), ‘epistemological cultures’ (Keller, 2002) and ‘evidential cultures’ (Collins, 

2004).3  These science-studies usages, however, have – almost unnoticed4 – opened a 

gap between our field and some of the connotations of ‘culture’ in the wider social 

sciences, where the term is often taken informally to connote ‘issues of meaning, 

symbols, values’, and is associated with an implicit theory of action as driven by 

matters such as ‘the inescapable weight of habit’ rather than by ‘purposeful tinkering, 

strategic aims and interests’.5  To invoke culture, in other words, can too easily be 

read as implicitly invoking Garfinkel’s ‘cultural dope’: the person who ‘produces the 

stable features of the society by acting in compliance with preestablished and 

legitimate alternatives of action that the common culture provides’ (1967: 68).   

 

                                                                                                                                       
poles with the same charge, unable to make contact as a result. Hands thus held tense in the shape of a 
bird’s beak place themselves one above the other and move along an imaginary plane following the 
movement of a curve. To express the option’s attempt to replicate [see our paper’s second section]… 
the grouped fingertips follow each other and are adjusted through little jolts’ (2011: 38). 
3 Broadly similar invocations of ‘culture’ in the context not of science but of economic life include the 
‘cultures of economic calculation’ of Kalthoff (2006) and the ‘calculative cultures’ of Mikes (2009). 
4 As far as we are aware, Knorr Cetina (1999: 8-11) is the only published discussion of the relationship 
of a science-studies usage to wider usages of ‘culture’. 
5 The quotations come from two of the three referees of (author ref.). The third referee commented in 
the similar vein that it was ‘unclear’ why something ‘should be called a “cultural” explanation at all 
if…turning to this form of evaluation was a perfectly rational thing to do’. Space considerations made 
it impossible to address those objections in that earlier article (author ref.), which therefore in its 
published version did not invoke ‘culture’. 
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Science-studies usages of ‘culture’ never invoke cultural dopes.  However, 

attention to the issue is needed when analyzing modelling, because the cultural dope 

has a close relative: what one might call the ‘model dope’, the person who 

unthinkingly accepts the outputs of a model.  Model dopes are invoked routinely in 

public discussion of financial markets, and in seminar presentations we have 

encountered audiences utterly convinced that they must exist, indeed that they are 

pervasive.  However, empirically it is far from clear that model dopes do exist: the 

contributions to the nascent social-studies-of-finance literature on modelling that have 

addressed the issue have all failed to find them.  Mars (1998; see Svetlova, 2012) 

shows how securities analysts’ judgements of the value of shares are not driven by 

spreadsheet models; rather, they adjust the inputs into these models to fit their ‘feel’ 

for the ‘story’ about the corporation in question. Svetlova (2009 and 2012) finds 

similar flexibility in how models are used: they are ‘creative resources’, she reports, 

rather than rules unambiguously determining action.  Beunza and Stark find the 

traders they study to be ‘[a]ware of the fallibility of their models and far from 

reckless’, and fully reflexive: indeed, traders practise ‘reflexive modelling’, in which 

models are used to infer others’ beliefs from patterns of prices.  This should not 

surprise us, point out Beunza and Stark: ‘why should we deny to financial actors the 

capacity for reflexivity that we prize and praise in our own profession?’ (Beunza and 

Stark, 2010:5). 

 

In our research experience, the ‘model dope’ exists, but not as an actual 

person: rather (in the form of, e.g., ‘sheet monkey’ or ‘F9 model monkey’) it is a 
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rhetorical device that actors deploy. 6  It is a way of describing someone as different 

from oneself: a way of ‘othering’ them.  There is no clear evidence in our research of 

model-dope behaviour or beliefs.  (For example, none of the 29 interviews we 

conducted prior to the crisis contains anything approaching an unequivocal 

endorsement of Gaussian copula models.)  Any satisfactory notion of ‘culture’, it 

seems to us, must treat the cultural dope and its local equivalents such as ‘sheet 

monkey’ as forms of othering, not adequate conceptualizations of the actor. Nor are 

‘cultures’ equivalent to sets of meanings, symbols and values: they encompass 

practices, including the most material of practices.  Ultimately, culture should be 

treated as a verb, not a noun (it is unfortunate that use of the verb is currently 

restricted to its biological sense): people do cultures, rather than culture existing as a 

thing causing them to act as they do.  Cultural essentialism is similarly quite wrong.  

Culture is not a kind of ‘package’ that is ‘coherent inside and different from what is 

elsewhere’ (Mol, 2002: 80).  All cultures are heterogeneous; all change; all borrow 

from elsewhere. 

 

 These, however, are very general considerations.  The specific cultures within 

finance on which we focus – ‘evaluation cultures’, we might call them, given that 

determining the economic worth and risks of financial instruments is their core 

activity – are at least partially shared sets of practices, preferences, forms of linguistic 

or non-linguistic communication, and beliefs (including perhaps an ontology: a 

distinctive set of beliefs about what ‘the economic world’ is made of).  To count for 

us as an evaluation culture, such a set must go beyond the boundaries of any particular 
                                                
6 ‘Model monkey’ was the pejorative term used by traders in both the Chicago and London options 
markets to describe other traders who employed printed sheets of theoretical options prices. ‘F9 model 
monkey’ (Tett 2005) is a similarly pejorative term for a spread-sheet user, and refers to the use of the 
F9 key to initiate calculation or recalculation.  
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bank or other financial organization.  Evaluation cultures ‘cross-cut’ organizations: as 

indicated very schematically in figure 1, they are a different form of social 

patterning.7 They offer, for example, a route to career advancement complementary to 

internal promotions: those who gain a good reputation with their counterparts in other 

banks can (very) profitably move.  The resultant circulation of personnel, along with 

industry meetings, training courses and other mechanisms, often make an evaluation 

culture’s practitioners personally known to each other, even in a large financial centre 

such as New York or London.8   

 

 What follows in this paper is, in part, a story of ‘organization’ trumping 

‘culture’: a tale of a family of models that were widely judged inadequate (in 

particular by the standards of a ‘locally’ hegemonic evaluation culture), but 

nevertheless were – and still are – retained in use, because of the organizational costs 

of abandoning them.  Those costs, however, are in good part to do with the usefulness 

of Gaussian copula models for communication and especially with the patterns of co-

ordinated behaviour that have arisen around the models.  Any meaningful concept of 

‘culture’, we posit, must view it as a form of and a resource for co-ordinated action,9 

and this – we suggest – is the case for evaluation cultures in finance: precisely 

because such cultures cross-cut organizations, they facilitate communication and 

explicit or implicit co-ordination amongst organizations.  For example, it is largely via 

                                                
7 Figure 1 is of course not to be read too literally.  Cultures do not have clear boundaries; nor indeed do 
organizations (see the delightful parable in Hines, 1988). 
8 Beunza and Stark (2004) and Lépinay (2011) discover large differences in practices within the 
organizations they study, for example differences amongst trading ‘desks’ (subgroups).  In our 
experience, intraorganizational differences of this kind are often manifestations of the intersection of 
evaluation cultures and organizations: e.g., the practices of the derivatives groups in a bank typically 
differ greatly from those of its ABS (asset-backed securities) desk, while the practices of the 
derivatives groups often quite closely resemble those of derivatives groups in other banks. 
9 Note that co-ordination does not necessarily imply harmony or the absence of competition: the most 
bitterly contested football match is still an example of co-ordinated action. 
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evaluation cultures that trading strategies and ideas for trading diffuse amongst 

organizations.  In our experience (author refs.), what circulates are not fully-fledged 

accounts of ideas and strategies but fragments of information (a shouted suggestion to 

‘check out what’s going on in Cisco’, a price graph, the information that a well-

regarded hedge fund has bought specific bonds), fragments that make full sense only 

to those who to some degree share an evaluation culture, and who will, for instance, 

interpret a graph of relative prices in a similar way (see Beunza and Stark, 2010).  

Also noteworthy in respect to the role of evaluation cultures in bridging between 

organizations is the surprisingly high levels of trust that can exist between apparent 

competitors: those in similar roles in other organizations who are pursuing similar 

strategies (see Simon, Millo, Kellard and Engel, 2011). 

 

The evaluation culture on which we mainly focus, which we call the culture of 

no-arbitrage modelling, is sketched in the second section of this paper.  In one 

particular local context – the derivatives departments of investment banks – that 

culture was and is hegemonic.  (A ‘derivative’ is a contract or security the value of 

which depends on the price or performance of an underlying asset such as a block of 

shares or pool of loans.)  We identify that culture’s ontology: it organizes its activities 

around a set of probabilities (‘risk-neutral’ or ‘martingale’ probabilities) invisible to 

others.  We emphasize that culture’s close connections to hedging practices in 

derivatives departments (practices utterly central to their work: see Lépinay, 2001), 

but also note the presence of aesthetic as well as practical criteria for what counts as a 

good model.  
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The third section of the paper describes the early history of the Gaussian 

copula family of models.  The fourth section of the paper moves to the work of 

Salmon’s focus, David X. Li, showing how Li brought to bear an intellectual resource 

from a mathematical culture different from that of no-arbitrage modelling (actuarial 

science).  The section also sketches differences between the two most important 

organizational contexts in which Gaussian copulas were used: the credit rating 

agencies (Moody’s, Standard & Poor’s and Finch, the focus of author ref.) and the 

derivatives department of investment banks, our focus here. 

 

The fifth section of the paper discusses in more detail the embedding of 

Gaussian copula models in the practices of investment banking. It shows how the 

copula approach mirrored mathematically the relevant organizational structures and 

discusses how copula models were used for communication (also highlighting the 

limitations in this respect that arose from the materiality of the implementations of the 

Gaussian copula).  The section goes on to examine the role of the Gaussian copula in 

a process that is utterly crucial to the trading of derivatives such as CDOs, which can 

involve considerable initial expenses (such as legal costs) but whose maturities 

(typically five, seven or ten years) often lie beyond traders’ expected working lives, at 

least in their current banks.  That process is the achievement of what market 

participants call ‘day-one P&L’: the present value of all the expected profit from a 

derivative is credited to the trader (e.g., in the calculation of his or her bonus) at the 

contract’s inception.  (‘P&L’ is the abbreviation of profit and loss.) 

 

The embedding of Gaussian copula models in communication and especially 

in the achievement of day-one P&L helps explain the most striking paradox in its 
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history, explored in the paper’s sixth section.  In our interviewing, we found that even 

some of those who had made the most important technical contributions to the 

development of the Gaussian copula family of models rejected those models (one 

even denying that they counted as instances of a ‘model’), and that such models 

repeatedly failed – not just during the credit crisis but also in an earlier 2005 

‘correlation crisis’ – in the sense that a crucial work practice, the calibration of a 

model (a term explained below) could not be completed.  Nevertheless, Gaussian 

copulas were – and are – still used; indeed, they are still canonical.  (That paradox is 

the methodological key to this entire paper.  The very fact that participants do not 

generally like Gaussian copulas throws their reasons for using them into clear focus.)   

 

The seventh section then returns to the question posed by Salmon’s article, 

enquiring into the extent to which the Gaussian copula family of models ‘killed Wall 

Street’.  An adequate answer, we posit, demands both a differentiated understanding 

of that family of models and also, more importantly, a grasp of the fact that a model 

never has effects ‘in itself’ but only via the material cultures and organizational 

processes in which it is embedded. The eighth section is the article’s conclusion, and 

it ends with the speculation that the role of Gaussian copula models in co-ordination 

(manifest here precisely because quants have to give an account of why they keep 

using the models despite disliking them) may be a more general phenomenon: that all 

shared models in derivatives trading in investment banking are resources for co-

ordinating action. 

 

The culture of no-arbitrage modelling 
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As Kuhn (1970) emphasized, scientific cultures often coalesce around exemplary 

achievements.  That latter role is played here by the theory of options developed by three 

members of the nascent specialism of financial economics, all based in or around MIT: 

Fischer Black, Myron Scholes and Robert C. Merton (Black and Scholes 1973; Merton 

1973).10   

 

An option is an example of a derivative: it is a contract or security that conveys a 

right but not an obligation, for example to buy a set quantity of an underlying asset (such 

as a block of shares) at a fixed price (the so-called ‘exercise price’) at a given future time.  

One might expect that the price of an option should depend on expectations about 

whether the price of the underlying asset is going to rise or fall.  On the Black-Scholes-

Merton model, however, that is not so.  The price of an option is determined by arbitrage, 

in other words by the fact that the prices of two things that are worth the same – that are 

entitlements to identical cash flows – must be equal, for if not there is an opportunity for 

arbitrage, for riskless profit (one buys the cheaper thing and sells the dearer one, and 

pockets the difference). 

 

In developing this ‘no-arbitrage’ model, Black, Scholes and Merton used what 

had by the early 1970s become the new specialism’s standard model of share-price 

movements: geometric Brownian motion.  (Brownian motion is the random movement of 

tiny particles, for example of dust and pollen, that results from collisions with the 

molecules of the gas or liquid in which they are suspended.  The standard mathematical-

physics model of this had been imported into finance, with a simple modification to 

                                                
10 Space considerations prevent discussion of the intellectual and institutional contexts that gave birth 
to modern financial economics: see Bernstein (1992), Mehrling (2005) and author ref. 
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remove the possibility of the prices of shares becoming negative, which is an 

impossibility because of limited liability: the owners of a corporation’s shares cannot lose 

more than their initial investment.)  Given geometric Brownian motion and some other 

simplifying assumptions (for example of a ‘frictionless’ market, in which both the 

underlying asset and riskless bonds can be bought or sold without incurring brokers’ fees 

or other transaction costs), Black, Scholes and Merton showed that it was possible to 

create a perfect hedge for an option: a position in the underlying asset and in riskless 

bonds that, if adjusted appropriately, would have the same payoff as the option whatever 

the path followed by the price of the stock, and that furthermore was ‘self-financing’ 

(once the position was initially established, the necessary continuous adjustments could 

be performed without requirement for additional capital).  Since they have identical 

payoffs, the price of the option must equal the cost of this perfect hedge (or ‘replicating 

portfolio’ as it is often called), or else there is an opportunity for arbitrage.  That simple 

argument  determines the price of the option exactly, and nowhere in the formula for that 

price is there any reference to investors’ beliefs about whether the price of the underlying 

asset was going to rise or fall. Also irrelevant to the price are investors’ preferences or 

attitudes to risk (beyond the fact that they prefer more wealth to less), which was a 

harbinger of what has become a striking difference between the culture of no-arbitrage 

modelling and much of mainstream economics.11  

 

The Black-Scholes-Merton model could have been taken simply as a surprising 

result about the pricing of an unimportant security (options were nothing like as 

important in the early 1970s as they were later to become).  Indeed, that happened: the 

                                                
11 When learning no-arbitrage modeling from textbooks and courses of the kind discussed below, the 
second author was struck by the absence of utility functions, a staple of his earlier education in 
economics. 
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editor of the economics journal in which Black and Scholes’s paper was published 

initially rejected it because (as he said in a letter to Black) option pricing was too 

specialized a topic (Gordon 1970).  However, others within financial economics did 

quickly take up and generalize Black, Scholes and Merton’s no-arbitrage model.  

Particularly important was the work of Stanford University applied mathematician and 

operations researcher, J. Michael Harrison, along with his colleague David M. Kreps and 

a former Stanford PhD student, Stanley R. Pliska.  Drawing upon ‘Strasbourg’ martingale 

theory – an advanced area of probability theory not previously applied to finance – they 

proved the two propositions about arbitrage-free, ‘complete’ markets that have become 

known as the ‘fundamental theorems of asset pricing’.12   

 

In so doing, Harrison, Kreps and Pliska provided what has become the dominant 

mathematical framework in which the exemplary achievement of no-arbitrage modelling, 

the Black-Scholes-Merton model, is a special case. Since that framework is at first sight 

dauntingly abstract, let us explain some of its salient features using ‘the parable of the 

bookmaker’, with which Martin Baxter and Andrew Rennie (quants at Nomura and 

Merrill Lynch, respectively) introduced one of the earliest – and still perhaps the most 

accessible – textbooks (Baxter and Rennie 1996).  Imagine a race between just two horses, 

and a bookmaker who knows the true probability of each horse winning: 0.25 for the first 

horse, and 0.75 for the second.  The bookmaker therefore sets the odds on the first horse 

                                                
12 First, Harrison, Kreps and Pliska showed that a market is free of arbitrage opportunities if and only if 
there is an equivalent martingale measure, a way of assigning new, different probabilities (‘martingale’ 
probabilities) to the path followed by the price of an underlying asset such that the price of the asset 
(discounted back to the present at the riskless rate of interest) ‘drifts’ neither up nor down over time, 
and the price of the option or other ‘contingent claim’ on the asset is simply the expected value of its 
payoff under these probabilities, discounted back to the present.  Second, that martingale measure is 
unique if and only if the market is complete, in other words if the securities that are traded ‘span’ all 
possible outcomes, allowing all contingent claims (contracts such as options whose payoffs depend on 
those outcomes) to be hedged with a self-financing replicating portfolio of the type introduced by 
Black, Scholes and Merton (Harrison and Kreps, 1979; Harrison and Pliska, 1981).   
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at ‘3-1 against’, and on the second at ‘3-1 on’.  (Odds of ‘3-1 against’ mean that if a 

punter bets $1 and wins, the bookmaker pays out $3 plus the original stake.  ‘3-1 on’ 

means that if a bet of $3 is successful, the bookmaker pays $1 plus the original stake.  In 

this simplified parable, the adjustments to the odds necessary for the bookmaker to earn a 

profit are ignored.) 

 

 Imagine, however, that ‘there is a degree of popular sentiment reflected in the bets 

made’, for example that $5,000 has been bet on the first horse and $10,000 on the second 

(Baxter and Rennie, 1996:1).  Over the long run, a bookmaker who knows the true 

probabilities of each outcome and sets odds accordingly will break even, no matter how 

big the imbalance in money staked, but in any particular race he or she might lose heavily.  

There is, however, quite a different strategy available to the bookmaker.  He or she can 

set odds not according to the actual probabilities but according to the amounts bet on each 

horse: in this example, ‘2-1 against’ for the first horse, and ‘2-1 on’ for the second.  Then, 

‘[w]hichever horse wins, the bookmaker exactly breaks even’ (Baxter and Rennie, 

1996:1).  As a probability theorist would put it, by adopting this second strategy the 

bookmaker has changed ‘the measure’, replacing the actual probabilities of each outcome 

(a quarter and three-quarters) with probabilities that ensure no loss (a third and two-

thirds).  Those latter probabilities are the analogue of the ‘martingale’ probabilities (see 

note 12) invoked by Harrison, Kreps and Pliska. 

 

 The shift in measure from actual probabilities to ‘martingale’ probabilities (or 

‘risk-neutral’ probabilities, as they are sometimes called) is a pervasive practice – both in 

academic financial mathematics and (as discussed below) in the derivatives department of 

investment banks – that can reasonably be called the ontology of no-arbitrage modelling.  
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Martingale or risk-neutral probabilities are simultaneously less real and more real than 

actual probabilities: less real, in that they do not correspond to the actual probabilities of 

events; more real in the sense that (at least in finance) those actual probabilities cannot be 

determined, while martingale or risk-neutral probabilities can be calculated from 

empirical data, the patterns of market prices.  (A bookmaker cannot actually calculate the 

true probabilities of the outcomes of a race, but can easily calculate how much punters 

have bet with him or her on each horse.)  As an interviewee put it, martingale or risk-

mutual probabilities ‘have nothing to do with the past [in other words, they are not based 

on the statistical analysis of past events] or the future [they are not the actual probabilities 

of events] but are simply the recoding of … prices’. 

 

 Socialization into the practices of no-arbitrage modelling was originally quite 

localized: at MIT, Robert C. Merton taught a notoriously mathematically demanding 

graduate course, described to us by two of his students.  More recently, however, such 

modelling has become the topic of textbooks such as Baxter and Rennie (1996), Duffie 

(1996) or Joshi (2008), and part of the standard curricula of masters courses in 

mathematical finance, such as that offered by New York University’s Courant Institute 

and Imperial College London.  Although such courses are certainly not exclusively 

devoted to no-arbitrage modelling, it forms a central part of their curricula.  The courses 

are expensive (for example, in 2011, tuition fees for the Courant Institute’s degree were 

$49,752, and Imperial’s degree cost £24,600),13 but students are willing to pay these large 

fees because such courses can lead to well-paying jobs as ‘quants’ (modellers) in the 

finance sector. 

                                                
13 See http://www.quantnet.com/mfe-programs-rankings and http://www3.imperial.ac.uk/pgprospectus. 
On the practicalities of getting a job as a quant, see Joshi (n.d.). 
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 Learning how to do no-arbitrage modelling has become essential for someone 

who hopes to become a quant, because there is a rough correspondence between that 

modelling and important aspects of financial practices, especially in the derivatives 

departments of investment banks.  The emphasis on hedging in Lépinay (2011) is 

consistent with our interviews: despite the widespread impression of reckless risk-taking 

that the credit crisis created, the standard practice of derivatives departments was and is 

carefully to hedge their portfolios.  Such hedging is incentivized by the way in which 

traders are paid (see the discussion below of ‘day-one P&L’), and analyses of the 

exposure of derivatives portfolios to the risks of changing prices, changing interest rates, 

etc., are part of a daily routine that several interviewees described.  The necessary 

modelling is very demanding computationally, even when grids of hundreds or thousands 

of interconnected computers are devoted to it.  So the necessary risk-analysis programs 

are typically run overnight, while during the trading day no-arbitrage modelling is applied 

primarily in pricing (again, see Lépinay 2011 on ‘pricers’, which are software programs 

that run the necessary models).  In pricing, all the complication of no-arbitrage modelling 

and martingale probabilities reduces to a simple precept: ‘price is determined by hedging 

cost’ (McGinty, Beinstein, Ahluwalia and Watts, 2004: 20).  It is the strategy of Black-

Scholes-Merton modelling writ large: determine the self-financing, continuously-adjusted 

portfolio of more basic securities that will have the same payoff as the derivative, 

whatever happens to the price of the underlying asset or assets; use that portfolio to hedge 

the derivative; and use the cost of the portfolio as a guide to the price of the derivative.  

(In actual practice, of course, the price quoted to an external customer will be greater than 

that cost, the difference generating the bank’s profit and the trader’s hoped-for day-one 

P&L.) 
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 As the overnight computer runs indicate, the practices of hedging and pricing in 

investment banking are based not on models as abstractions but on material 

implementations.  For example, using a model involves the practice that market 

participants call ‘calibration’: finding the values of the model’s parameters that are the 

best fit to patterns of market prices.  Calibration is seldom if ever done ‘by hand’: the 

computerized implementation of a model will involve an automatic feed of market prices, 

the definition of the criterion of ‘best fit’, and an algorithm that searches for the 

parameter values that best fit market prices.  Calibration is a crucial part of the daily work 

process: if it fails (as it sometimes did during episodes discussed below), it is a crisis for 

that work, because automatic ‘pricers’ will not longer function and the appropriate 

hedging ratios will no longer be generated.   

 

The critical role of a no-arbitrage model as a guide to hedging generates for 

traders a practical criterion of a good model.  If they implement the hedges implied by the 

model, the profitability of the resultant trading position should be ‘flat’ (constant), 

indicating (e.g. to risk controllers) that the position’s risks are being controlled fully.  

P&L should not ‘swing too much’, said an interviewee: ‘That is what it is always about’.  

Nevertheless, not all judgements amongst models are purely pragmatic.  An approach that 

can encompass the modelling of a huge range of complex derivatives yet be boiled down 

to the two simple theorems formulated by Harrison, Kreps and Pliska fits well with the 

preferences for ‘elegance’ of many of those with advanced mathematical training.  In the 

middle of their textbook, for example, Baxter and Rennie, who have just recast the 

derivation of the exemplary achievement, the Black-Scholes-Merton model, in the more 

general framework of martingale theory, pause:  
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with a respectable stochastic model for the stock [geometric Brownian motion], 

we can replicate any [derivative].  Not something we had any right to expect. … 

Something subtle and beautiful really is going on under all the formalism … 

Before we push on, stop and admire the view (Baxter and Rennie, 1996: 98).   

 

By now, perhaps, the reader may feel this paper is a badly-telegraphed murder 

mystery: the culprit is surely this strange, abstract culture.  Not so.  The Gaussian copula 

family of financial models drew upon resources from that culture, but was never entirely 

of that culture.  It is time to turn to the history of Gaussian copula. 

 

The origins of the Gaussian copula  

 

The first of the Gaussian copula family of models in finance was developed between 

1987 and 1991 by Oldrich Vasicek, a probability theorist and refugee from the Soviet 

invasion of Czechoslovakia, who was hired in late 1968 by John McQuown, head of the 

Management Science Department of Wells Fargo in San Francisco.  McQuown was a 

strong supporter of the new field of financial economics, hiring its leading figures such as 

Fischer Black and Myron Scholes to work for the bank as consultants, and financing 

annual conferences of the field at which Wells Fargo staff members such as Vasicek were 

‘able to sit in and listen, wide-mouthed’ (Vasicek interview).  Those conferences and his 

work for the bank introduced Vasicek to the Black-Scholes-Merton model and to 

Merton’s use of stochastic analysis (the theory of stochastic processes in continuous time), 

which underpinned the model.  In 1983, McQuown persuaded Vasicek (who had left 

Wells Fargo to teach finance at the University of Rochester) to join him in a new venture, 

a firm called Diversified Corporate Loans.  McQuown’s idea was to enable banks to 
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diversify their typically ‘very ill-diversified’ loan portfolios (heavily concentrated in 

specific geographical regions or particular industries) by swapping ‘loans that the bank 

has on its books for participation shares’ in a much larger, better diversified, pool of loans 

originated by many banks (Vasicek interview).   

 

‘[I]t didn’t work’, says Vasicek – banks did not take up the idea – but the 

modelling work he did in developing it had lasting effects.  In order that the swap could 

be negotiated, it was necessary to model the risks of both default on a loan to one specific 

corporation and of multiple defaults in a large pool of loans to many corporations.  

Financial economists had tackled the first of these problems, but not the second.14  It was 

immediately clear to Vasicek that defaults on loans to different corporations could not 

plausibly be treated as statistically independent events.  As he put it in an unpublished 

note, now in his private papers: 

 

 The changes in the value of assets among firms in the economy are 

correlated, that is, tend to move together.  There are factors common to all 

firms, such as their dependence on [the] economy in general.  Such 

common factors affect the asset values of all companies, and consequently 

the loss experience on all loans in the portfolio. (Vasicek, 1984: 9) 

                                                
14 Black, Scholes and Merton – particularly Merton, in what has become known as the Merton or 
‘structural’ model of a corporation’s debt (Merton 1974) – had shown how their options model could be 
applied to modelling the value of corporate debt, via the argument that a corporation’s shareholders in 
effect own an option on its assets.  Imagine, for the sake of simplicity, that the corporation’s borrowing 
takes the form of a fixed sum (its ‘debt’) that must be paid in full on a given date.  If, on that date, the 
corporation’s assets are worth more than its debt, the aggregate value of its shares is simply the difference 
between the two.  If the assets are worth less than the debt, the shareholders, if economically rational, 
should allow the corporation to become bankrupt, and the value of its shares is then zero.  That payoff 
structure is exactly the same as that enjoyed by the purchaser of an option to buy the firm’s assets at the 
fixed price of the firm’s debt (Merton, 1974: 452-54).  That was the insight on which Vasicek built his 
work on the debt of individual corporations, work that eventually became the foundation of a successful 
company, San-Francisco-based KMV (now owned by the credit rating agency, Moody’s). 
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The task Vasicek set himself, therefore, was to model the value of a pool of loans to 

multiple corporations, taking account of the correlation between changes in the values of 

different firms’ assets.  He was unable to find a general model that had an ‘analytical’ 

solution: i.e., one that did not involve computer simulation. He did, however, succeed in 

formulating an analytically-solvable special case, which has become known as the 

Vasicek or large homogeneous pool model. 

 

 The special case was a pool of equally-sized loans, all falling due at the same time, 

each with the same probability of default, and with the same correlation between the 

values of the assets of any pair of borrowers (these features are why the model is referred 

to as a ‘homogeneous pool’ model).  He showed that as n, the number of loans, becomes 

very large the probability distribution of different levels of loss on the portfolio converges 

to the expression given as equation 2 of Appendix 1 below, the equation that has been 

used to generate Figures 2 and 3 of this paper. 

 

 The figures capture a crucial feature of all Gaussian copula models: the radical 

differences in the shape of the probability distribution of losses at different correlation 

levels.  They are based on applying Vasicek’s model to a large pool of homogeneous 

loans, each with a default probability of 0.02.  (This corresponds roughly to a typical 

estimate of the probability of a firm with a low investment-grade rating such as BBB 

defaulting in the coming five years.)  The expected level of loss on the pool is in all cases 

the same in all the graphs: it is just the probability of default on any individual loan, 0.02.  

If correlation is very low (e.g., 0.01), the probability distribution of losses on the portfolio 

clusters tightly around this expected loss, while if correlation is higher the probability 
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distribution ‘spreads out’ more: the probability of losing very little increases, but so does 

the probability of a loss markedly higher than 0.02.  If correlation is very high indeed 

(e.g., 0.99), the probability distribution becomes bimodal (‘twin-peaked’), with a palpable 

risk of almost complete loss: the entire pool is starting to behave like a single asset. 

 

 Vasicek’s work was not published at the time: modelling credit risk (the risk of 

borrowers defaulting) was critical to the business of his firm.  However, his derivation of 

the large homogeneous pool model (some thirty lines of maths) did circulate privately: 

David X. Li, for example, recalls seeing it in the form of a photocopy of a handwritten 

original, probably Vasicek’s (email to first author, 24 May 2008).  What Vasicek and his 

colleagues (by then at another new firm, KMV) were doing was acknowledged as an 

important influence by a team at J.P. Morgan, who developed and disseminated to other 

banks a credit risk model they called CreditMetrics (Gupton, Finger and Bhatia, 1997: vi).  

In 1996, the bank had released RiskMetrics, a suite of software that enabled market prices 

to be fed into a model that calculated ‘value-at-risk’, a measure of the exposure of a 

portfolio to losses caused by fluctuations in market prices.  Making RiskMetrics available 

to other banks had helped the growth of the interest-rate derivatives market, in which J.P. 

Morgan was a major player, and the bank’s hope – so an interviewee reported – was that 

doing the same with CreditMetrics would foster the market for credit default swaps (a 

form of quasi-insurance against corporate default), in which J.P. Morgan enjoyed a 

dominant position.  

 

 KMV had already reluctantly concluded that the strong simplifying assumptions 

of Vasicek’s large homogeneous pool model were too restrictive for plausible practical 

use.  As an interviewee put it, ‘they [KMV] really loved the Vasicek closed form’, in 
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other words a model that yielded an analytical solution, one that could be expressed in the 

form of relatively straightforward mathematical expressions (equations 1 and 2 in 

Appendix 1). The practicalities of modelling a heterogeneous world meant, however, that 

‘they were forced kicking and screaming … to eventually just go with the Monte Carlo’, 

as this interviewee put it: in other words, to employ computer simulation.  That, too, was 

the path taken by the J.P. Morgan team with CreditMetrics.  As in other applications of 

Monte Carlo modelling (for the history of which see Galison, 1997), random numbers 

were used to generate a very large number of ‘scenarios’, and the corporate defaults in 

each of the scenarios were aggregated to form an estimate of the loss in that scenario, 

with the probability distribution of different levels of loss on the overall pool calculated 

by aggregating across all the scenarios.  While that sounds very different from Vasicek’s 

model with its analytical solution, CreditMetrics employed the same underlying model of 

firms’ asset values: correlated geometric Brownian motion.  Instead, however, of directly 

employing the stochastic differential equations expressing correlated Brownian motion, 

as Vasicek had done, CreditMetrics simply used correlated, normally distributed random 

numbers to generate the scenarios used in the simulation (Gupton, Finger and Bhatia 

1997).  It was computationally far more complex, but in a sense conceptually simpler: 

CreditMetrics could be understood, at least in outline, by anyone who could grasp the 

idea of correlated, normally distributed, random numbers. 

 

Broken hearts and corporate defaults 

 

Both Vasicek’s large homogeneous pool and CreditMetrics were ‘one-period’ models: 

even though the underlying stochastic processes took place in continuous time, all that 

was modelled was whether corporations defaulted within a single, given time period, and 
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not when in that period they defaulted.  It is at this point that David X. Li, the quant on 

whom Salmon focuses his article, enters the story.  Li was brought up in rural China 

(where his family lived because of the Cultural Revolution), and moved to Canada in the 

early 1990s for a Masters in Actuarial Science and a PhD in Statistics at the University of 

Waterloo.  After a session (1994-5) teaching actuarial science and finance at the 

University of Manitoba, he became a risk manager at the Royal Bank of Canada and then 

a quant in the Canadian Imperial Bank of Commerce, where he modelled ‘credit 

derivatives’ such as the CDOs discussed below.   

 

‘I was aware of Vasicek[‘s] work’, Li told the first author in an email message (24 

May 2008), and admired its elegance but noted its limitations: ‘I found that was one of 

the most beautiful math I had ever seen in practice.  But that was a one period 

framework’.  The yields of a corporation’s bonds, or the prices of the new credit default 

swaps, could however be used to model the ‘survival time’ of an individual corporation 

(in other words, the time until it defaults).  So, as Li put it in this email, ‘the problem 

becomes how to specify a joint survival time distribution with marginal distribution [the 

probability distribution of the survival time of each individual corporation] given’.  

 

To address this problem, Li drew on a cultural resource not from financial 

economics but from actuarial science and ultimately mathematical statistics: copula 

functions.  While at the University of Manitoba, Li had co-taught with the research 

actuary Jacques Carriere.  With the sponsorship of the Society of Actuaries, Carriere was 

collaborating with Jed Frees of the University of Wisconsin and Frees’s doctoral student 

Emiliano Valdez on the problem of the valuation of joint annuities, in particular annuities 
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in which payments would continue to be made to one spouse if the other died (email to 

first author from Frees, 23 January 2012).   

 

When pricing joint annuities and calculating the necessary capital reserves, 

standard practice in the insurance industry was simply to assume that the deaths of a wife 

and of a husband were statistically independent events.  That greatly simplified the 

calculation: ‘With this assumption, the probability of joint survival is the product of the 

probability of survival of each life’ (Frees, Carriere and Valdez, 1996: 230).  However, it 

was already well-established empirically that there was a tendency for the death of one 

spouse to increase the chances of death of the other, a phenomenon ‘often called the 

“broken heart” syndrome’ (Frees, Carriere and Valdez, 1996: 230).  To help solve the 

problem of valuing joint annuities without relying on the assumption of independence, 

Frees, Carriere and Valdez drew on work done almost forty years earlier by the Illinois 

Institute of Technology mathematician, Abe Sklar.  Sklar had introduced the notion of a 

‘copula function’, a way of ‘coupling’ a set of marginal distribution functions (in the case 

being examined by Frees and his colleagues, the function that specifies the probability 

that the wife will die at or before a given age, and the separate function that specifies the 

probability that the husband will die at or before another age) to form the ‘joint’ or 

‘multivariate’ distribution function (which, in this case, specifies the probability that the 

wife will die at or before a given age and the husband will die at or before another age): 

see Appendix 2.  The work by Frees and his colleagues was both mathematically 

impressive (their paper won the 1998 Halmstad Prize of the Actuarial Education and 

Research Fund) and of some practical importance: it showed that taking into account the 

‘correlation’ between the mortality of a wife and a husband reduced the value of a joint 

annuity by around 5 percent (Frees, Carriere and Valdez, 1996: 229).   
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Their work provided Li with the crucial link between his training in actuarial 

science and the problems of credit derivatives modelling on which he was working: there 

was a clear analogy between a person’s death and a corporation’s default, and the risks of 

different corporations defaulting were known to be correlated to some degree, just as the 

mortality risks of spouses were.  Copula functions permitted Li to escape the limitation to 

a single period of the large homogeneous pool model and CreditMetrics (Li, 1999 and 

2000), while still drawing a direct connection between his new approach and 

CreditMetrics (from January 1999 to March 2000 he worked in the RiskMetrics Group 

spun out by J.P. Morgan).  Viewed in the lens of Li’s work, the model of correlation in 

Vasicek’s large homogeneous pool and in CreditMetrics was a Gaussian copula, in other 

words a copula function that couples marginal distributions to form a multivariate normal 

distribution function.  Although other copula functions were discussed by Li and by 

others also exploring the applicability of copula functions to insurance and finance (such 

as a group of mathematicians at the Eidgenössische Technische Hochschule Zürich and 

University of Zürich with strong links to the financial sector),15 this connection to 

CreditMetrics – already a well-established, widely-used model – together with the 

Gaussian’s simplicity and familiarity meant that as others took up the copula function 

approach, the Gaussian copula had the single most salient role.   

 

 From the viewpoint of this paper, the most important modelling problem to which 

the Gaussian copula was applied was the evaluation of collateralized debt obligations 

(CDOs), securities based originally upon pools of debt instruments such as corporate 

                                                
15 See Embrechts, McNeil and Straumann (1999), Frey and McNeil (2001) and Frey, McNeil and 
Nyfeler (2001). 
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bonds or loans to corporations (the somewhat later ABS CDOs, in which the pool 

consisted of mortgage-backed securities, will be discussed in the penultimate section of 

this paper).16  CDOs became popular from 1997 onwards (see author ref). The firm 

(normally a large investment bank) creating a CDO would set up a legally-separate 

‘special-purpose vehicle’ (a trust or special-purpose corporation), which would buy a 

pool of bonds or loans, raising the money to do so by selling investors securities that were 

claims on the cashflow generated from the pool.  Crucially, the securities that were sold 

were tranched: the lowest, equity tranche bore the first risk of losses caused by default on 

the bonds or loans, and only once the holders of that tranche were ‘wiped out’ did losses 

impact on the next-highest, mezzanine, tranche (see Figure 4).  In a typical CDO, if 

correlation was low, then only the holders of the equity tranche would be at substantial 

risk of losing their investment. (The greater safety of higher tranches had the downside 

that investors in them earned lower ‘spreads’: i.e., lower increments over a baseline 

interest rate such as Libor, the London Interbank Offered Rate.) If, however, correlation 

was very high (as in the 0.99 case in Figure 3), even the holders of the most senior 

tranche were at risk.  So modelling correlation was the most crucial problem in CDO 

evaluation. 

 

 As noted above, Li’s work freed CDO modelling from its restriction to a single 

time period.  It did not, however, free it from the other chief limitation: that, in practical 

problems, no ‘analytical’ solution akin to that of Vasicek’s large homogeneous pool 

(equations 1 and 2 in Appendix 1) could be found, so Monte Carlo simulation was needed.  

                                                
16 Gaussian copula models, especially CreditMetrics, were also used to analyze the risks of banks’ 
overall portfolios of loans, an application that became particularly important as the simple rules in the 
1988 Basel Capital Accord for determining banks’ necessary minimum capital reserves were replaced 
(under ‘Basel II’) by credit risk models. Although that process of replacement was still not complete by 
the time of the outbreak of the credit crisis in 2007, it represents another possible connection between 
the Gaussian copula and the crisis that remains to be researched. 



 29 

The consequences of this were very different in the two main contexts in which the 

Gaussian copula was used.  In the credit rating agencies – Moody’s, Standard & Poor’s 

and Fitch – the task was to work out the probability of default for each tranche of a CDO, 

or, in the case of Moody’s, the expected loss on the tranche.  (Typically, the constructors 

of a CDO aimed to get AAA ratings for the most senior tranches, and BBB ratings or 

slightly higher than that for mezzanine tranches.)  For working out a probability of 

default, a one-period Monte Carlo model akin to CreditMetrics, running on a PC, was 

judged perfectly adequate.  For example, when Standard & Poor’s introduced such a 

model in its new software system, CDO Evaluator, in November 2001, it reported that 

the simulation time needed to run a hundred thousand scenarios on a PC was around two 

and a half minutes (Bergman 2001).  That was not a salient delay: CDOs are complicated 

legal and cash-flow structures, and assessing those aspects of them would take far longer 

than two minutes.  Nor was moving beyond one-period models to Gaussian copulas in 

Li’s sense seen in the rating agencies as an urgent priority.  Standard & Poor’s made the 

move only with version 3.0 of Evaluator, released in December 2005, while Fitch simply 

kept using its one-period model, Vector, analyzing a multi-year CDO by running Vector 

for the first year and then again for the second year, and so on.  (Moody’s also seems to 

have stuck with one-period Monte Carlo formulations, although our interviews do not 

contain detailed information on practice at Moody’s in this respect.)  

 

 The situation in the other main context, investment banking, was quite different.  

When CDOs first started to become a relatively large business, in the late 1990s, 

evaluating a CDO on a ‘once and for all’ basis (akin to practice at the rating agencies) 

was adequate (typically, the risks of all but the equity tranche were sold on to external 

parties), and CreditMetrics or similar one-period models were judged up to the job.  In 
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the early 2000s, however, new versions of CDOs became popular, of which the most 

important were ‘synthetic’ single-tranche CDOs.  Instead of consisting of a special-

purpose legal vehicle that bought a pool of debt instruments, these new CDOs were 

simply bilateral contracts between an investment bank and a client (such as a more minor 

bank or other institutional investor) that mimicked the returns and risks of a CDO tranche.  

They became popular because there was heavy demand for the mezzanine tranches of 

CDOs, which had an attractive combination of investment-grade credit ratings and 

healthy ‘spreads’ (in other words, the ‘coupons’ or interest payments they offered were 

set substantially above benchmark interest rates such as Libor).  The mezzanine tranches, 

however, formed only a small part of the structure of a traditional ‘cash’ CDO of the kind 

shown in Figure 4, so mimicking them (without having to tackle the practical and legal 

problems of assembling a cash CDO) was an attractive proposition. 

 

 The new synthetic single-tranche CDOs were typically constructed and sold by 

the derivatives departments of global banks.  To the staff in those departments, a single-

tranche CDO, like any derivative, was a product whose risks needed to be hedged, and 

indeed it was via that hedging that the bank would make its profits.  Unless the tranche 

was completely wiped out by defaults on the debt instruments in the hypothetical pool, 

the bank kept having to make coupon payments to the investors.  To earn money to do so 

– and mitigate what from the bank’s viewpoint was the risk of low levels of default – it 

could, for example, ‘sell protection’ on (in other words, ‘insure’ against default) each 

individual corporation in the pool, in what were becoming relatively well-developed 

markets in such protection.  Doing so was – very roughly – analogous to hedging an 

option, and indeed (with the Black-Scholes-Merton model already familiar to banks’ 

derivatives departments) the hedge ratios that were needed were christened ‘deltas’.  
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(‘Delta’ is the term used in the options market for the partial derivative – in the calculus 

sense of ‘derivative’ – of option value with respect to the price of the underlying asset, 

which determines the size of hedge against changes in that price that is needed.)  A 

single-period CDO model such as CreditMetrics was poorly suited to the task of 

determining deltas, so following Li’s work there was rapid, sustained interest in 

investment banking in copula formulations.   

 

 The delta hedging of single-tranche CDOs and the calculation of other risk 

parameters meant that the material constraints on Monte Carlo simulation were a major 

issue for investment banks, not the minor one they were for rating agencies.  Extracting  

reliable estimates of a large set of partial derivatives such as a deltas from a Monte Carlo 

copula model was vastly more time-consuming than using the model to price or to rate a 

CDO tranche.  In a situation in which the IT departments of many big banks were 

struggling to meet the computational demands of the overnight runs – ‘some days, 

everything is finished at 8 in the morning, some days it’s finished at midday because it 

had to be rerun’, an interviewee told the first author in early 2007 – the huge added load 

of millions of Monte Carlo scenarios was unwelcome.  The requisite computer runs 

sometimes even had to be done over weekends: an interviewee told the first author of one 

bank at which the Monte Carlo calculation of deltas took over forty hours.   

 

 The innovative efforts of investment-bank quants were therefore focussed on 

developing what were christened ‘semi-analytical’ versions of the Gaussian and other 

copulas.  These involved less radical simplifications than Vasicek’s model with its 

‘analytical’ solution (equations 1 and 2 in Appendix 1), while being sufficiently tractable 

mathematically that full Monte Carlo simulation was not needed and much faster 
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computational techniques such as numerical integration, Fourier transforms and recursion 

sufficed.  A commonly used simplification was introduced by, amongst others, Jean-Paul 

Laurent and Jon Gregory of the French bank BNP Paribas.17  The simplification was to 

assume that the correlations amongst the asset values or default times of the corporations 

in a CDO’s pool all arose simply from their common dependence on one or more 

underlying factors. Most common of all was to assume just one underlying factor, which 

could be interpreted as ‘the state of the economy’.  The advantage of doing this was that 

given a particular value of the underlying factor, defaults by different corporations could 

then be treated statistically independent events, simplifying the mathematics and greatly 

reducing computation times.  By the time Laurent and Gregory published their initially 

private May 2001 BNP Paribas paper in the Journal of Risk, they were able to describe 

this ‘one-factor Gaussian copula’ as ‘an industry standard’ (Laurent and Gregory, 2005: 

2).  ‘Factor reduction’ (as this was sometimes called) and other techniques developed by 

other quants – such as, for example, the recursion algorithm introduced by the Bank of 

America quants Leif Andersen, Jakob Sidenius and Susanta Basu (Andersen, Sidenius 

and Basu, 2003) – made it possible for Gaussian copulas, and other copula models, to run 

fast enough to be embedded in the hedging and risk management practices of investments 

banks’ derivatives departments.  Although such techniques might originally have been 

proprietary, they quickly became common knowledge amongst investment bank quants.  

People moved from bank to bank, carrying knowledge of models with them, and quants – 

typically educated to PhD level or beyond – retained something of an academic habitus, 

talking about their work to their peers, and seeking opportunities to publish it. 

 

                                                
17 Broadly analogous factor models were also discussed at around this time by Rüdiger Frey and Alex 
McNeil of the Zürich group and Philipp Schönbucher of Bonn University (Frey and McNeil 2001; 
Schönbucher 2001).  
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Organization, communication and remuneration  

 

CreditMetrics and later semi-analytical versions of the Gaussian copula always had rivals, 

but none of them succeeded in displacing them.18  A Gaussian copula model was 

relatively straightforward to implement, at least if one was content with a Monte Carlo 

implementation such as J.P. Morgan’s CreditMetrics: ‘it was simple and everyone could 

build it’, said an interviewee.  J.P. Morgan was the dominant bank in the credit 

derivatives market (see Tett 2009), and its embrace of Gaussian copulas helped cement 

their canonical role:  Morgan would simply supply Gaussian models to its clients, and 

other investment banks started to do so too.  True, the crucial parameters that were 

needed in order to use Gaussian copula models, the correlations between the asset values 

of pairs of corporations, were extremely difficult to determine: the market value of a 

corporation’s assets is not directly observable (accounting conventions mean that it 

cannot simply be determined from a firm’s balance sheet, and in any case those balance 

sheets are published only quarterly at best).  However, the Gaussian copula’s rivals also 

had data problems,19 and early users of the Gaussian copula in banks employed a simple 

                                                
18  Perhaps the most direct rival to CreditMetrics was CreditRisk+ (Credit Suisse First Boston, 1997). 
Instead of modelling changes in asset value, as CreditMetrics did, CreditRisk+ focussed simply on default, 
modelling defaults with a Poisson distribution with a variable mean default rate.  CreditRisk+ did not 
explicitly model correlation: instead, the clustering of defaults was modelled via the volatility of default 
rates.  CreditRisk+ had the advantage of not requiring Monte Carlo simulation, and was used reasonably 
widely by banks to calculate the capital reserves they needed to hold against risks in their loan book, but it 
does not seem to have been used much in the evaluation of CDOs: ‘CreditRisk+ was developed mostly for 
non-rated loans held in a “hold to maturity” account.  CreditMetrics was developed for a trading situation’ 
(Nelken, 1999: 237).  Credit Suisse also seems to have been less vigorous in promoting it than J.P. Morgan 
was in relation to CreditMetrics and other Gaussian copula models, with Gupton (2004: 122) commenting 
about CreditRisk+ that there was a ‘[l]ack of vendor support: Credit Suisse Financial Products does not 
actively support this as a product’. 
19 Supporters of CreditMetrics and CreditRisk+ each criticized the lack of data from which the crucial 
parameter in the other model could be estimated.  Thus Greg Gupton, at that point J.P. Morgan’s 
CreditMetrics product manager, told journalist Mark Parsley that ‘default-rate volatility measures’, the 
crucial input into CreditRisk+, ‘will be difficult to obtain because of the lack of default data’.  John 
Chrystal of Credit Suisse Financial Products countered that ‘while correlation data is available for 
actively traded bonds, a correlation-based approach is not much use if you are looking at a retail loan 
portfolio with no price history’ (Parsley, 1997: 88). 
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‘fudge’: they used the easily calculated correlation between two corporations’ share 

prices as a proxy for the unobservable correlation of the market values of their assets.   

 

 A structural feature of the organization of most investment banks also favoured 

copula models.  Edward Frees and Emiliano Valdez, who with Jacques Carriere had 

introduced copula functions to actuarial science, had noted that copulas partitioned the 

mathematical task into two separable parts: ‘Copulas offer analysts an intuitively 

appealing structure, first for investigating univariate distributions and second for 

specifying a dependence structure’ (Frees and Valdez, 1998: 20).  The econometric 

consequences of splitting the task in this way could be criticized (one interviewee argued 

that: ‘if you have, for example, a maximum likelihood estimate of a two-parameter 

statistical function then what you should not do is estimate the two parameters in a 

sequential way … you will have a bias or a wrong estimate’), but the separation had the 

advantage of mirroring how the trading of credit derivatives was usually organized.  

Typically, investment banks had one ‘desk’ (trading team) dealing with ‘single-name’ 

derivatives such as credit default swaps (‘insurance’ against default by a particular 

corporation, where the main issue mathematically at stake was a univariate distribution: 

its default probability as a function of time) and a separate desk dealing with multi-name 

credit derivatives such as CDOs, where mathematically specifying a dependence structure 

was necessary. 

 

That the copula approach in this sense mirrored mathematically the relevant 

organizational structure was, of course, an advantage of all copula-function models, not 

just the Gaussian copula. It was well known to quants that the Gaussian copula had the 

unfortunate property of asymptotic ‘tail independence’: as the Zürich mathematicians 
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referred to above put it, ‘Regardless of how high a correlation we choose, if we go far 

enough into the tail [the extremes of the distribution] extreme events appear to occur 

independently in each margin’, and the Gaussian copula might therefore not ‘be able to 

give sufficient weight to scenarios where many joint defaults occur’ (Embrechts, McNeil 

and Straumann, 1999: 19; Frey, McNeil and Nyfeler, 2001:1-2). However, while the 

Zürich group and others therefore advocated the use of non-Gaussian copula functions, 

and such functions were sometimes used in investment banks’ internal modelling, the 

Gaussian copula remained canonical, in part because of its use for communication 

between banks.  If traders in one bank (which for internal purposes used one non-

Gaussian copula) had to ‘talk using a model’ to traders in a different bank that used a 

different copula, the Gaussian copula was the most convenient Esperanto: the common 

denominator that made communication easy. 

 

In using a model to communicate, an analogy between the Gaussian copula and 

the Black-Scholes-Merton model quite consciously influenced participants’ practices.  

The latter model could be used not simply to price an option, but to work out the level of 

volatility consistent with a given option’s price.20  ‘Implied volatility’, calculated in this 

way by running the Black-Scholes-Merton model ‘backwards’, had become a standard 

feature of how participants in options markets talked about options, even of how they 

negotiated prices.  Two traders haggling over the price of an option could talk to each 

other not in dollars but in implied volatilities, for example with one trader offering to buy 

the option at an implied volatility of 20% and the other offering to sell it at 24%, and 

perhaps splitting the difference at 22%.21  Indeed, this practice became sufficiently 

                                                
20 See Beunza and Stark (2010) for a discussion in a different context of ‘backing out’ a parameter. 
21 Other things being equal, the higher the price of an option the higher the implied volatility of the 
underlying asset.   
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widespread in the options market that prices were, and are, frequently quoted in implied 

volatility levels. 

 

 A similar communicative practice developed around CDOs, especially from 

around 2003-4 onwards, when new markets in what were in effect single-tranche 

synthetic CDOs based on a standardized pool of underlying assets were created (the 

reasons for their creation are briefly discussed below).  These new ‘index’  markets, as 

they were called, made ‘market prices’ of CDOs publicly available for the first time 

(earlier CDOs had been ad hoc deals privately sold ‘over the counter’ to institutional 

investors).  They thus offered a new way of inferring correlation, the key parameter of 

Gaussian copula models.  Instead of trying directly to measure correlation – which was, 

as noted, fraught with difficulties22 – a Gaussian copula could be run ‘backwards’ to 

extract ‘implied correlation’ (the correlation level consistent with prices in the index 

market), just as an options model could be run backwards in order to estimate implied 

volatility. To do so necessitated a considerable simplification: the correlations of all pairs 

of corporations in the ‘pool’ of the index in question had to be assumed to be identical.  

Nevertheless, ‘implied correlation’ became a standard feature of how participants talked 

about the ‘index markets’, and to our knowledge when they communicated in this way it 

was always a Gaussian copula that was invoked.  As in the case of options, the banks that 

operated as marketmakers began to quote not just dollar prices but also the corresponding 

levels of implied correlation.  A quant who had worked on one of these trading desks in 

                                                
22 After Li’s work, it became increasingly common to formulate models in terms of the correlation of 
corporation’s survival times, rather than the correlation of the values of their assets, and (in the case of 
corporations that have not defaulted) survival times are obviously not observable.  Hull, Predescu and 
White (2005) demonstrate that if the conditions of a ‘structural’ model of default akin to Merton (1974) 
hold, the correlation of two corporations’ survival times is equal to the correlation of the values of their 
assets. 
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2003-4 told us how he ‘got a lot of pressure from my boss saying … “everyone is asking 

me for implied correlation, why aren’t you doing that?  You’re terrible.”’   

 

The quant’s reluctance to provide implied correlations reflects the fact that there 

were two obstacles to using them for communicating, and only the first was successfully 

circumvented.  That obstacle was that in the case of many index tranches, especially 

mezzanine tranches, running a Gaussian copula model backwards often yielded not a 

single correlation value consistent with the ‘spread’ on the tranche, but two values.  In 

other cases, the model would simply fail to calibrate: it could not reproduce market prices, 

and no correlation value would be generated.  In a widely circulated critique of existing 

practices in respect to ‘implied correlations’ (‘compound correlations’, as they 

rechristened them), a group of quants and traders at J.P. Morgan gave an example 

concerning mezzanine tranches in one of the main index markets:  

 

… for the traded spread of 227bp [i.e. 2.27% per annum], there are two 

possible correlations, one in the 10-15% range, and another around 80%.  

Moreover, if the spread on this tranche were over 335bp, there would be 

no correlation that gives this spread, and hence no solution (McGinty et al. 

2004: 25). 

 

Instead, the J.P. Morgan team advocated that the market move in its communicative 

practices from ‘compound correlation’ to what they called ‘base correlation’ (see 

Appendix 3).  Others in the market quickly saw the advantages of doing so: 

communicating using ‘base correlations’ was just as easy, and the practical difficulties of 

sometimes having two solutions and sometimes none were almost always avoided.  The 
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switch was the final stage in the construction of what, by the time of the first interviews 

drawn upon here, was (and still remains, as discussed below) the canonical model: the 

Gaussian copula base correlation model.    

 

The second difficulty faced by attempts to communicate – and especially to quote 

prices – using correlations proved harder to circumvent, and its roots were again in the 

materiality of modelling.  Because the Gaussian copula models in practical use were at 

best only semi-analytical, different implementations of them could yield different results.  

For example, as one interviewee said: ‘There is your [numerical] integration routine.  Do 

you use a trapezium rule?  Do you use Gauss[ian] quadrature?  There are all sorts of 

nuances.’  As another interviewee put it: ‘What is a single-factor Gaussian copula? … 

The implementation is absolutely key.  All it [the model] says is, integrate under here.  

How you choose to integrate under this function is still open to [different] 

implementations.  So, yeah, everything will be slightly different.’ 

 

 The contrast with the Black-Scholes-Merton model was sharp.  Its solutions were 

in effect fully analytical: sufficiently simple mathematically that different 

implementations of them would not lead to results that differed by economically 

meaningful amounts.  So, for example, two traders could agree a deal ‘priced’ in levels of 

implied volatility, and both their models would then output effectively the same dollar 

price.  With a semi-analytical Gaussian copula, however, two traders could agree on a 

correlation level, but even if they were using what was in abstract ‘the same model’, its 

different implementations would often produce different prices or spreads, stymieing the 

consummation of the deal.   As a quant told us in January 2007: 
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… everyone has agreed on this model [Gaussian copula base correlation], but … 

let’s say you take two [implementations] built by two different quants.  You put in 

the same correlations and you  might find your CDO price is quite different. … So 

if you had 100 basis points [one percentage point] implied spread on a CDO 

tranche, you might find that two different models would [output] 99 to 101, and 

[the difference] could even be more than that in certain places.  So when people 

were initially quoting correlation, they found that it didn’t translate into being 

tradable, because it still didn’t allow them to pin down the price enough. 

 

 In 2004, the J.P. Morgan team that was successfully pushing the idea of base 

correlation also tried to tackle this problem of different implementations head on, and 

sought to persuade others in the market for standardized indexed tranches all to use 

Vasicek’s large homogeneous pool model, with its simple analytical solution (equations 1 

and 2 in Appendix 1), as the way to move between correlation levels and prices:  

 

We went out with ... a large-pool model, ‘cos I was hoping it was going to 

be Black-Scholes … my hope was, you could almost have it as a quoting 

mechanism, right, if everyone had the same model and they all agreed on 

the same model it didn’t matter whether it was a good model or not. ... 

[W]e could give someone the spreadsheet with it [the large-pool model] in.  

So, here you are, there’s no add-ins [additional algorithms such as 

implementations of numerical integration] or stuff, ... it’s just standard 

sums that you can look into, understand how it works and run it again and 

again and again.  And we can give that [to market participants].   

 



 40 

The effort did not succeed.  J.P. Morgan’s advocacy of the large homogeneous 

pool model for communication and for price quotation was misunderstood as 

advocacy of the internal use of the model, for example as a means of calculating 

deltas.  The misunderstanding was perhaps wilful, because other global banks 

were seeking to contest J.P. Morgan’s dominant position in the credit derivatives 

market.  The effort to achieve communicative consensus around the large-pool 

model ‘was fairly successful in Europe’, said an interviewee, but ‘not very 

successful in the U.S. where basically our, our sort of rival firms spun it as, “J.P. 

Morgan has got an inaccurate model”’.   Because the model assumed complete 

homogeneity of the assets in a CDO’s pool, it implied exactly the same delta in 

respect to each asset, and plainly that was a poor guide to hedging.  As another 

interviewee put it, market participants ‘all said, “deltas are rubbish”, so they 

dropped the model.’ 

 

 Because J.P. Morgan’s effort did not succeed, the use of the Gaussian 

copula for purposes of communication never became as deeply entrenched as the 

equivalent use of the Black-Scholes-Merton model in the options market.  As an 

interviewee said, ‘because the standardized [large homogeneous pool] model 

failed, people had to drop correlation as a quotable’ in the standard index tranche 

market, a process that was well underway at the time of the first interviews for 

this research in 2006.  Agreeing deals by agreeing correlation levels did not stop 

completely, however, because it provided a point of stability in ad hoc 

negotiations, especially amongst sophisticated participants.  For example, a 

manager of one of the leading hedge funds in this area told us:  
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… you can imagine that if you are having a negotiation with somebody, 

and you get to the end of the day, and you can say, ‘I think we got a deal,’ 

what is it that you have a deal on? … What happens if, when you come in 

the next morning, spreads [on the underlying assets] are fifty basis points 

wider? … what’s the price?  How can we agree that at 5 o’clock today we 

are going to make a fair adjustment based on how the market changes for 

when we get in tomorrow?  Well, we can say, look, spreads are going to 

move, dispersion is going to move, let’s just agree on what the implied 

correlation is.  We agree the implied correlation is 12%, you’re done. 

 

 As well as being partially embedded in communication amongst banks and hedge 

funds, the Gaussian copula also played a pivotal role in a crucial organizational process: 

determining traders’ bonuses.  The critical issue here was how and when profit should be 

‘booked’.  My interviewees reported a universal desire amongst traders for the profits on 

a credit derivatives deal (most of which lasted for between five and ten years) to be 

recognized in their entirety as soon as the deal was done – as ‘day-one P&L’ – and so to 

boost that year’s bonus as much as possible.  (‘P&L’ is, as noted, profit and loss, the 

crucial determinant of traders’ bonuses.)  ‘Let’s say … you sell a deal for … 100 and it’s 

really worth 95 [i.e. 95 percent of the sale price]’, said an interviewee.  (His example of a 

5 percent difference between the price of a deal and its value is probably unrealistically 

small.  Another interviewee told us that in the early years of the credit derivatives market 

it was not unusual for traders to sell a deal ‘at par’ – 100 cents in the dollar – when their 

‘bank[‘s] system would have told them that this was worth about 70 cents’.  A single 

trade ‘would make [$]20 million of P&L.’)  Could the difference between price and value 

be booked immediately as day-one P&L, or would ‘you have to accrue that profit and you 
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can only take, say it’s a ten-year deal, you can [only] take a tenth each year’?   From the 

trader’s viewpoint, gradual accrual over ten years was deeply unattractive: most traders 

would have left the bank in question well before the ten years were up. 

  

Being able to ‘book’ profit as day-one P&L depended upon having a credible 

estimate of value, of how much a deal was ‘really worth’.  Up until the bankruptcy of 

Enron in 2001, banks had a great deal of discretion concerning whether and how to book 

day-one P&L, but because the booking of day-one P&L in energy derivatives played a 

significant role in the Enron scandal, the issue began to attract the attention of regulators 

and auditors.  In 2002, the Emerging Issues Task Force of the US Financial Accounting 

Standards Board (FASB) began to examine ‘whether unrealized gains or losses may be 

reported at inception of energy trading contracts’ (Emerging Issues Task Force, 2006: 3).  

With the Securities and Exchange Commission making clear that the underlying issue did 

not affect merely energy derivatives, with concern about the issue growing in Europe as 

well, and with the collapse in 2002 of Enron’s auditors, Arthur Andersen, making the 

surviving auditing firms aware just how big the dangers were, ‘booking’ moved to centre 

stage.  

 

The issue had three main aspects.  The first was the observability of the prices or 

mathematical parameters used in the calculation of P&L.   The FASB’s Emerging Issues 

Task Force (2006: 3) concluded that ‘a dealer profit, or unrealized gain or loss at 

inception of the contract, may not be recognized unless it is evidenced by quoted market 

prices or other current market transactions’.  At the start of the 2000s, it would have been 

hard credibly to claim that the crucial parameter in Gaussian copula models, correlation, 

was observable: it could, at best, be estimated with difficulty.  The ‘fudge’ employed in 
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the late 1990s – using the correlations between equity prices (share prices) instead of 

correlations between asset values – was too easily contested.  As a textbook put it: ‘There 

is no theoretical equality between equity correlation and default time correlation. … 

[E]quity derived correlations have no theoretical justification’ (Chaplin, 2005: 259-260).  

The issue was, interviewees reported to me, a major spur for the development of the 

standardized index tranche markets.  Correlations ‘backed out’ from market prices in 

those markets using a theoretical model were, in practice, agreed by auditors as having 

been ‘observed’ from the viewpoint of permitting the booking of profits as day-one P&L. 

 

The second aspect of the issue of ‘booking’ P&L concerns which model to use to 

perform this ‘backing out’.   Here, the fact that the Gaussian copula base correlation 

model was a market standard provided a considerable incentive to keep using it, because 

it avoided having to persuade accountants and auditors within the bank and auditors 

outside it of the virtues of a different approach.  In one bank, we did discover a radically 

different model being used instead of a copula, but even there, the model’s developer 

told me, ‘finance [i.e. internal accountants and auditors] do look at [Gaussian] base 

correlations … for reference’.  Furthermore, there was a need to maintain consistency 

with the outputs of Gaussian copula models even when one was using a different model.  

As this interviewee put it, ‘you have to show that you are matching the market, so that 

means that you can match the prices of the … tranches that you see’, prices generally 

arrived at by others’ use of the Gaussian copula.  Important to this process was and is a 

service called Totem, administered by Markit, the leading data provider for credit 

derivatives.  Each month, Totem sends trading desks a set of hypothetical CDOs to be 

priced.  The desk quant does the pricing, returns the result to Totem, and receives back 

the prices set by all the trading desks using the service.  So each bank can assess the 
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closeness of its pricing to the consensus (again, a consensus reached predominantly by 

use of the Gaussian copula).  ‘You do monthly submissions on [Totem], and as long as 

that is showing a happy result [in other words prices close to the consensus] then 

finance will be pleased’, said this interviewee.   

 

The third main aspect of achieving day-one P&L was persuading a bank’s risk 

controllers that a position was properly hedged and thus that the anticipated profit was 

insulated from market fluctuations.  The issue here is that deltas and other hedge ratios 

are model-dependent.  If a trader started to use a model substantially different from the 

Gaussian copula, then a position that was properly hedged on that model would not look 

properly hedged to risk controllers, unless the trader could succeed in the difficult task 

of persuading them to stop using the market-standard model. 

 

The most important role of a correlation model, another quant told the first author 

in January 2007, is as ‘a device for being able to book P&L’, and this role sharply 

constrained the choice of model available to him:  

 

[Y]ou can’t say, I have the most fantastic model … I love this model and 

this model tells me I have made this much money so I want to book this 

much profit and pay my traders their bonuses. … You can’t do that, you 

have to … to be able to say … I have a hundred-name portfolio which I 

traded with a client and I’ve got [a] Gaussian copula base correlation 

[model] which is market standard.  I fit the model to the market.  I then do 

all these tricks to price my product, and now it [the model] tells me that I’ve 

made x.  [That] effectively allows me to do a ten-year trade and book P&L 
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today … without that people would be in serious trouble, all their traders 

would leave and go to competitors. 

 

Othering and the crises of the Gaussian copula 

 

From the viewpoint of both communication and remuneration, therefore, the Gaussian 

copula was hard to discard.  For all its deep entrenchment, however, pervasive 

dissatisfaction with the Gaussian copula was expressed by interviewees even in our 

earliest interviews in 2006 (including from the quant whose explanation of why the 

Gaussian copula had to be used has just been quoted).  Indeed, the entire enterprise of 

correlation modelling was quite often regarded with some scepticism: one of the leading 

hedge funds in credit derivatives had in one of its conference rooms an abacus with the 

label ‘Correlation Model’ (Beales 2007).23 

 

One specific source of dissatisfaction with Gaussian copulas was a phenomenon 

that market participants christened the ‘correlation skew’.  If the Gaussian copula model 

were an entirely correct representation, then when one applied it to the different tranches 

of a CDO in order to ‘back out’ the implied correlation or base correlation, the correlation 

figures that were produced should all be equal.  They never were: in particular, the 

implied correlation of the highest tranche (sometimes called ‘super-senior’) was always 

higher than the correlation implied by the spreads on the mezzanine tranches.  So instead 

of a ‘flat’ correlation structure, there was a ‘correlation skew’.   

 

                                                
23  When the first author visited the fund in May 2009, it had moved offices, and perhaps after the crisis 
irony no longer seemed appropriate.  The abacus was no longer to be seen, but our interviewee 
confirmed it had been there. 
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 There was a closely analogous phenomenon in the pricing of options: the 

‘volatility skew’ (indeed, the term ‘correlation skew’ became common currency because 

of the analogy).  Again, if the Black-Scholes-Merton model were a correct representation, 

then the implied volatility of all the options on the same underlying asset with the same 

expiration date should be equal.  In the early years of the use of the Black-Scholes-

Merton model in options markets, deviations from equality were relatively modest, but 

after the 1987 stockmarket crash a systematic volatility skew appeared, and patterns of 

prices have never returned to the postulates of the model.  Although the topic is complex 

(see author ref.), what has in essence happened is that market participants realized after 

the 1987 crash that the model underestimated the probabilities of catastrophic events, and 

they have adjusted their pricing accordingly.  

 

 In options there had thus been a phase (from around 1975 to summer 1987) in 

which the Black-Scholes-Merton model was performative in what can be called the 

‘Barnesian’ sense: its use helped generate patterns of prices consistent with the model 

(see author ref., which invokes Barnes, 1988).  The Gaussian copula, in its equivalent 

‘pure’ form, never enjoyed an equivalent ‘Barnesian’ phase.  The correlation skew 

became manifest in 2003-4 with the creation of the market in standardized indexed 

tranches, which provided market participants with easily-accessible data from which 

implied correlations or base correlations could be backed out using the Gaussian copula.  

Even before that, however, ‘in a qualitative sense people knew about the skew’, an 

interviewee told us.  ‘People knew that the senior tranches had not been priced with the 

same correlation as … the junior tranches, because the spread would be like one basis 

point [0.01 percent]’.  In other words, pricing the most senior tranches using the 

correlation level used to price the mezzanine tranches would leave the former with 



 47 

hopelessly unattractive spreads.  ‘A lot of this boils down to pretty basic stuff’, said 

another interviewee:  

 

Maybe the model says the super-senior tranche only pays [a spread of] three basis 

points [0.03 percent], but who the hell is going to read through the whole of the 

prospectus, figure out the risk, hire a lawyer to analyze the document, figure out 

how to book it, get a model approval, da da da, for something that only pays three 

basis points.  They’re saying, ‘Look, I’m really not going to get out bed for 

anything less than ten [basis] points.’  There is no science in that, it’s just 

anything about ten sounds kind of good. 

 

 The existence of the correlation skew was not fatal to the use of the Gaussian 

copula.  In options markets, traders had learned to live with the volatility skew, by 

continuing to use Black-Scholes-Merton but employing different inputs for the implied 

volatility of options with different exercise prices.  This ‘practitioner Black-Scholes’, as it 

was sometimes called, might be logically inconsistent, but it was workable.  When such 

traders moved into credit derivatives, said an interviewee, ‘they were not at all shocked 

by this.  They said, “well, it just means that there is some kind of implied market … 

skew”’.  The CDO market proceeded in practice in the same way, using the market-

standard Gaussian copula base correlation model, but with different levels of base 

correlation for different tranches.  With the exception of the two crises to be discussed 

below, that too was a workable way of proceeding.  Indeed, as a quant put it to us in a 

November 2008 interview, ‘the nice thing’ about the Gaussian copula base correlation 

model ‘is that it fits the market exactly, or at least it used to’.  (‘Used to’ refers to the 

failures of calibration discussed below.)  To ‘fit the market exactly’ meant that by using 
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the model with different levels of base correlation for each tranche, it was possible to 

‘calibrate’ the model exactly: to find parameters that allowed it to reproduce precisely the 

pattern of prices that prevailed in the market.   

 

 That quant, however, went on immediately to ‘other’ the Gaussian copula base 

correlation model: ‘The bad thing is it’s not a model.’  That statement indicates a second 

source of dissatisfaction with the Gaussian copula, at least amongst the quants 

interviewed (traders, etc., typically did not give voice to this second source).24  All these 

quants were perfectly well aware of the ad hoc fixes that were necessary to keep practices 

involving the Black-Scholes-Merton model ‘working’.  These, however, were fixes to 

what they saw as a good model, indeed the paradigmatic good model: one in which prices 

were imposed by arbitrage, and in which there was a well-defined risk-neutral or 

martingale measure.  The quant who told us that the Gaussian copula was ‘not a model’ 

went on to explain what he meant: ‘it doesn’t satisfy the law of one price [in other words, 

the absence of arbitrage opportunities].  It … can give you inconsistencies and arbitrages 

very easily.  You’re not computing values … as expectations under some well-defined 

measure.’ 

 

 It is important to note that the quant who said this had made important technical 

contributions to the development of the Gaussian copula family of models.  Others were 

even more critical.  ‘Copulas are generally an early doodling activity in an area’, said 

another quant in a January 2009 interview.  ‘They are a simple trick to allow yourself to 

preserve the marginals [default probabilities for individual corporations] and to induce 

                                                
24 Other sources of dissatisfaction included the Gaussian copula’s asymptotic tail independence (see 
above) and the fact that copula models had static parameters (e.g., correlation levels that did not change 
with time). 
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some sort of coupling.’  Copulas ‘are perceived as a hack’, he said, despite having 

‘superficially attractive properties like being able to perfectly reproduce markets’. 

 

 That these interviews took place in November 2008 and January 2009, after the 

credit crisis, may cause the reader to suspect that this othering of the Gaussian copula was 

tactical, an attempt by interviewees to distance themselves from it because of its role in 

the crisis.  However, one of our pre-crisis interviews contained a very similar critique of 

the Gaussian copula, again from a quant who had contributed importantly to its technical 

development.  Right at the start of an interview in January 2007, without any prompting, 

he distinguished between the Black-Scholes-Merton model – in which pricing is imposed 

by arbitrage and ‘the price is something that is derived from a hedging strategy’ – and the 

Gaussian copula, which was, he said, a case in which ‘a pricing model gives everyone a 

consensus to all sort of use the same model, put in roughly the same inputs, and therefore 

everyone kind of agrees on the same price’:  

 

  So, the thing that is very interesting on credit [derivatives] is … almost for 

the first time in finance we have models which are not so robust and are 

almost there as a kind of consensus, and that’s all very well until 

something changes and something can change quite dramatically. 

 

In retrospect, the first author’s thoughts have often gone back to that interview, 

some six months before the first unequivocal symptoms of the coming catastrophe.  Was 

it a warning he missed?  The interviewee, however, looked backwards in time for his 

example of what he meant, not forwards.  In May 2005, just over eighteen months prior 

to the interview, the credit derivatives market had been rocked by its first major crisis: the 
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‘correlation crisis’, as market participants came to call it.  The ultimate cause of the crisis 

was the popularity, noted above, of synthetic single-tranche mezzanine CDOs.  The major 

banks that marketed these CDOs to their customers ended up buying lots of ‘protection’ 

(quasi-insurance against default) on mezzanine tranches, which left them with a market 

exposure they did not want.  That created the possibility of what appeared to be a 

mutually beneficial trade between investment banks (saying to themselves, as one 

interviewee put it, ‘we can’t have such a concentration of that risk’) and hedge funds, 

looking to make profits: salespeople at banks could say to hedge funds ‘I could structure 

a trade like this, it’s great value, look at the [price] history’.25   

 

 The way the trade worked was that investment banks would reduce their 

unwanted exposure by selling hedge funds protection on the mezzanine tranches of  

standardized indices similar in their composition to the single-tranche CDOs that the 

banks had been marketing.  The hedge funds would then sell protection on the lowest 

tranches (the ‘equity’ tranches) of those indices, and the income they could earn by doing 

so was greater than the expense of buying protection on mezzanine tranches from the 

investment banks.  By choosing appropriately the relative sizes of the mezzanine 

protection bought and equity protection sold, the result was a delta-neutral position (that 

is, a position hedged against improvements or deterioration in the perceived overall 

creditworthiness of the corporations whose debts underpinned the index in question) that 

would nevertheless make a consistent profit for the hedge fund.  Even some banks seem 

to have been tempted into the trade. 

 

                                                
25 The interviewee in question was talking more generally, rather than about the specific trades 
discussed here.  
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 In the terminology of correlation trading, however, the trade made the hedge 

funds and banks taking part in it ‘long correlation’: they were exposed to correlation 

levels falling.  (High levels of correlation benefit those who have sold protection on 

equity tranches because it makes outcomes more binary, as in the 0.99 case in figure 2.  

The chance of catastrophe sufficiently serious to hit even the most senior tranches 

increases, but the chance of little or no loss, and therefore an intact or almost intact equity 

tranche, increases as well.)  Put another way, the hedge funds were exposed to events that 

would provoke concern about idiosyncratic risks; in other words, risks that affect just one 

corporation or a very small number of corporations, because such risks endanger the 

sellers of protection on equity while leaving the situation of mezzanine tranches almost 

unchanged. 

 

 Idiosyncratic risk was precisely what manifested itself on 5 May 2005, when 

Standard & Poor’s stripped General Motors and Ford of their investment-grade ratings, 

reducing GM to BB and Ford to BB+.  It was a noteworthy event, a ratings agency 

having reduced the obligations of the great mass-market car companies of the 20th 

century to ‘junk’. But it took place in generally benign economic conditions: it could 

indeed be interpreted as an increase in a very specific risk.  What appears then to have 

happened, interviewees told us, was that a particular large hedge fund (one interviewee 

named it, but it has been impossible to get confirmation of its identity) decided to unwind 

its position, which meant buying protection on equity tranches to cancel out its sales.  The 

cost of ‘protection’ on those tranches thus increased, placing pressure on those who had 

similar positions, who then also tried to unwind, further increasing the cost of protection 

on equity.  In contrast, the cost of protection on mezzanine tranches fell (unwinding 

implied having to sell protection on those tranches).  When Gaussian copula models were 
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used to ‘back out’ correlation levels, that pattern of change in costs suggested that the 

correlation skew had steepened sharply, hence the name ‘correlation crisis’.26   

 

 The result, said interviewees, was large losses for a number of hedge funds and 

some banks.  The crisis attracted very little reporting, either at the time or subsequently, 

perhaps because of its complicated nature (and the absence of any spectacular 

bankruptcies). The Financial Times reporter Gillian Tett was one of the few to pick up 

the story, and the informants she spoke to said that it involved undue faith in models: 

‘People thought the models were almost infallible – the last few days have been a real 

shock’, one banker told her (Tett 2005).  However, when the first author similarly 

suggested to another interviewee in January 2007 that the trade had been ‘model-driven’, 

he disagreed:  

 

the press always wants to talk about these smart traders who were wrong 

because they believed in the models.  I mean, no-one is that stupid that 

you put on a trade with a delta which is delta-neutral, I mean, no, you 

know that it’s only delta-neutral if nothing else changes. 

 

Whatever the role of the Gaussian copula in causing the correlation crisis, it was 

certainly something of a crisis for modelling practices.  The steepening of the correlation 

skew during the crisis was sufficiently large that at some points market-standard 

Gaussian copula base correlation models simply failed to calibrate.  This was not an 

abstract failure, but a material incapacity of models, as implemented in software systems, 

                                                
26 See the graphs of tranche spreads and the corresponding base correlation levels in early 2005 in 
Packer and Wooldridge (2005: 6). 



 53 

to be able to find parameter values that allowed the pattern of market prices to be 

reproduced.  An interviewee reported that this happened both to a particular model he had 

developed and more generally: 

 

  the [sharply reduced spreads on the] mezzanine tranche actually violated 

[the] lower bound that this stochastic correlation model was imposing.  … 

[The episode] was very upsetting to many people because their models 

simply stopped working.  They couldn’t match the market any more. 

 

 That calibration failure, however, was a failure only on a few particular days, and 

the ‘correlation crisis’ did not generate any major widespread change in the dominant 

practices of modelling.  Far more widespread failures of models to calibrate were, 

however, experienced in the second of the crises to afflict correlation modelling, the 

credit crisis that erupted in the summer of 2007.  As the crisis deepened, the cost of 

protection on the apparently safest, super-senior tranches of the indices rose to 

unprecedented levels, as fears of systemic collapse increased.  It wasn’t, however, simply 

that the 0.99 correlation scenario of figure 3 manifested itself in the pattern of market 

prices: repeatedly, no correlation value at all could be found that enabled price patterns to 

be reproduced.  By the autumn of 2007, an interviewee told us, the spreads on super-

senior tranches were so high that the standard implementations of Gaussian copula base 

correlation models would not calibrate.  In that implementation: 

 

  [Y]ou can derive some bounds on the value of the super-senior tranche.  

And those bounds were violated by the market.  Spreads were too high for 

the super-senior tranches.  You couldn’t get there. 
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This time, the failure to calibrate was not a transient phenomenon: in 2007-8, repeated 

failures of calibration were experienced (for examples, see Brigo, Pallavicini and 

Torresetti, 2010: 100). 

 

 Hugely disruptive as failures to calibrate are to the day-to-day work of pricing and 

hedging, there is nevertheless a sense in which the standard Gaussian copula base 

correlation model has survived even this crisis.  It has been ‘tinkered with’, rather than 

discarded.  Prior to the 2007-8 crisis, it was standard to assume that if a corporation 

defaulted then the ‘recovery rate’ (the extent to which losses on that corporation’s debts 

were less than total) was 40 per cent, which is roughly the historic average.  More 

recently, however, that assumption has been discarded, and recovery rates have been 

modelled as stochastic rather than fixed.  In particular, in one-factor Gaussian copula 

models, recovery rates have been made dependent upon the value of the underlying factor, 

which as noted above can be interpreted as the ‘state of the economy’: it is assumed that 

in ‘bad’ states of the economy, recovery rates will be much lower than in ‘good’ states.  

Altering the standard model in this way has made it possible for modelling to ‘work’ (to 

calibrate) most of the time, even in the very turbulent conditions of recent years.  

‘Working’ is still not universal – there have reportedly been particular days when even 

with this alteration standard models fail to calibrate (Brigo, Pallavicini and Torresetti, 

2010: 104) – but the ‘fix’ has been good enough to keep the Gaussian copula dominant.  

Moving to a radically different model would be hard – for the reasons discussed in the 

previous section – and in a situation in which the underlying markets have shrunk 

dramatically, it is easier to ‘fix’ a model that was already understood by traders and 



 55 

accountants (not just quants) than to suffer the financial, communicative and cognitive 

costs of moving to a different approach.   

 

‘The Formula That Killed Wall Street’? 
 
 
What has just been discussed, however, is the (limited) effect of the credit crisis upon 

the Gaussian copula family of models. What, however, of the effect in the other 

direction? Did the Gaussian copula kill Wall Street? 

 

The actors on which this paper has focussed – the users of Gaussian copula 

models in the derivatives departments of investment banks – came under huge strain 

(including the calibration failures discussed in the last section), but their activities did 

not generate losses of sufficient magnitude to threaten the survival of their banks or of 

the financial system. Certainly, there were losses on the credit default swaps, the 

index tranches, and the CDOs (based on pools of corporate debt) with which those 

actors dealt, but those losses – while very big – were not catastrophic.  As an 

interviewee said in July 2010: ‘Losses you hear around the place, “I lost a billion 

dollars”, which in normal times would be very notable.’  A billion dollar loss, 

however, does not kill a big global bank.  The level of loss needed to do that (of the 

order of $50 billion) did not come from the world discussed here: ‘the base corr guys 

[users of Gaussian copula base correlation models] are still standing… There were 

definitely bad days for everybody with the markets jerking around, and people felt the 

swings but I am not sure that there was anything in terms of an Armageddon for the 

models’.  
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Rather, the critical path by which the Gaussian copula was implicated in the 

credit crisis was via rating agencies, in particular in the rating not of CDOs based on 

pools of corporate debt `but of ‘ABS CDOs’.  These are CDOs in which the 

underlying assets are asset-backed securities (ABSs), specifically mortgage-backed 

securities. These were introduced somewhat later than corporate-debt CDOs, and 

originally were a small-scale business: of the 283 CDOs issued in 1997-1999, only 

eight were ABS CDOs (Newman et al., 2008: 34, exhibit 1). By the time ABS CDOs 

started to become large-scale (from 2001 onwards), the rating agencies already had in 

place an organizational division of labour. Both CDOs and ABSs fell within the remit 

of their structured finance departments, but those departments had separate groups 

rating CDOs, on the one hand, and ABSs on the other (author ref.).  

 

The new ABS CDOs were therefore evaluated by the rating agencies in two 

temporally and organizationally separate steps. First, the underlying mortgage-backed 

securities or other ABSs were rated by the groups handling ABSs, and then the 

overall CDO structure was rated by the CDO groups. Instead of considering ABS 

CDOs as radically different instruments that required an altogether new form of 

evaluation, the CDO groups simply made relatively modest modifications to their 

existing techniques for analyzing CDOs with pools consisting of corporate debt. From 

late 2001 onwards, those techniques increasingly involved the use of models in the 

Gaussian copula family, albeit – as noted above – usually one-period models 

analogous to CreditMetrics, not fully-fledged copulas of the kind introduced by Li. 

With little econometric data to draw upon (empirically estimating the correlation 

between ABSs is an even harder econometric problem that estimating corporate 

correlations), the CDO groups employed largely judgment-based ABS correlation 
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estimates broadly similar to those they used for the analysis of corporate CDOs. When, 

for example, Standard & Poor’s introduced its new one-period Gaussian copula 

system, CDO Evaluator, in November 2001 the same correlation (0.3) was used for 

the correlation between ABSs from the same sector (for example, ABSs based on 

subprime mortgages) as was used for the correlation between corporations in the same 

industry (Bergman 2001).   

 

The result of the assumption of only modest correlation was an extremely 

attractive opportunity for market participants to take ABSs of only modest credit 

quality (for example, the mezzanine tranches of mortgage-backed securities with BBB 

ratings) and package them into CDOs with very large AAA tranches. Widespread 

exploitation of this opportunity had catastrophic consequences, both direct and 

indirect.  A substantial proportion of the gigantic losses  that directly crippled global 

financial institutions were incurred in ABS CDOs,27 and the avid demand of ABS 

CDOs for the mezzanine tranches of subprime mortgage backed securities also had 

the indirect effect of side-lining the traditional buyers of such securities, who had 

typically scrutinized the underlying pools of mortgages with great care (Adelson and 

Jacob, 2008a). ABS CDOs sat at the end of what market participants sometimes call 

an ‘assembly line’, in which subprime mortgages were bundled into ABSs, and then 

ABSs were bundled into ABS CDOs, with a view simply to achieving desirable 

ratings with little effective concern for risks in the underlying assets that were not 

captured by those ratings.  

 

                                                
27 Citigroup lost $34 billion on ABS CDOs, Merrill Lynch $26 billion, UBS $22 billion and AIG $33 
billion (Benmelech and Dlugosz, 2009). 
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In effect, market participants had ‘outsourced’ the analysis of ABS CDOs to 

the rating agencies. It was perfectly possible to profitably construct an ABS CDO 

without doing any correlation analysis of one’s own: all one had to do was to check 

that an intended structure would achieve the desired large AAA tranches, a task that 

was made easy by the fact that market participants could simply download Standard 

& Poor’s CDO Evaluator and its analogues at the other agencies. The first author 

vividly remembers a February 2009 interview in which he asked a senior figure at a 

firm that managed ABS CDOs what correlation model the firm had employed, only to 

be met with a blank stare: no model of its own had been used.  

 

In the major investment banks, some analysis of ABS CDOs (beyond simply 

checking desired ratings) was conducted, but in most cases very little by the standards 

of the culture of no-arbitrage modelling.  ABS CDOs often fell outside the remit of 

the derivatives departments of those banks.  They were frequently constructed and 

analyzed by other groups, such as those specializing in mortgage-backed securities: 

‘The guys doing ABS had essentially different roles and different attitudes’, reported 

one interviewee. With one partial exception, Goldman Sachs, such modelling of ABS 

CDOs as was done did not take the form of no-arbitrage modelling.28 Rather, it 

involved either cashflow models of the underlying ABSs (with judgment-based 

estimates of likely mortgage default rates) fed into a cashflow model of the CDO, or 

inferring the default probabilities of the ABSs from their ratings and using them in a 

                                                
28 Goldman’s modelling of ABS CDOs used estimates of default probabilities and correlations based 
on patterns of market prices, not, e.g., the historical records of mortgage defaults used by other banks 
and by the rating agencies. Our hypothesis is that this may in part account for Goldman’s decision to 
exit the subprime market (and indeed to ‘short’ it) as conditions began to deteriorate late in 2006, a 
decision that made it possible for Goldman to survive the crisis financially almost unscathed. However, 
the lawsuits currently faced by Goldman make it impossible for us to interview those involved.  
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Gaussian copula model of the CDO, in much the same way as the rating agencies 

modelled ABS CDOs.  To those whose view was that the proper activity of a quant 

was no-arbitrage modelling, the catastrophic losses were thus on products (ABS 

CDOs) that in the words of one such quant ‘were on the whole either less quanted or 

not quanted at all’.  

 

An issue of ontology underlies judgements such as that made by the 

interviewee just quoted.  As noted, no-arbitrage modelling extracts martingale or risk-

neutral probabilities from patterns of market prices.  Goldman aside, this style of 

modelling – which is what the interviewee meant by ‘quanting’ – was, as far as we 

can discover, simply not applied to ABS CDOs.  Rating agencies did model ABS 

CDOs, but rating agencies do not work with martingale probabilities: rather, they seek 

to estimate actual probabilities of default, and to do so they use the historical records 

of defaults, not price patterns.29  In the case of subprime mortgage-backed securities, 

which dated at most only from the 1990s, such records encompassed only one 

relatively mild recession and almost continuously rising house prices.  Unfortunately 

– as we now know only too well – when those conditions changed, such securities, 

and the mortgage borrowers on whom they were based, began to behave quite 

differently. 

 

Conclusion 

 

                                                
29 In 2002, Moody’s bought Vasicek’s firm, KMV.  The acquisition seems, however, not to have 
brought about a major change in how Moody’s rated CDOs. 



 60 

As the previous section has outlined, the Gaussian copula family of models was 

implicated in the processes that ‘killed Wall Street’. Salmon, however, is quite wrong 

to focus on David Li. By the time of the crisis, the ratings agencies had moved only 

partially from the early one-period models to fully fledged copula models of the kind 

introduced by Li, and the move was not of great consequence to the processes 

generating the crisis.  It was far less consequential than the way in which the 

evaluation of ABS CDOs was mapped onto the organizational structure of the 

agencies (the separate analyses of first the component ABSs and then the CDO’s 

structure), the estimation of the probabilities of default on ABSs using data from a 

period of benign economic conditions, and the fact that the CDO groups in the 

agencies analyzed an ABS CDO in almost the same way as a CDO based on corporate 

debt.  

 

Nor would it be reasonable to blame the Gaussian copula family of models, in 

itself, for the crisis. These models did not have unitary, intrinsic effects: they had 

effects only in combination with the material cultures in which they were 

implemented and organizational processes in which they were embedded. Gaussian 

copula models as employed by the rating agencies were different in their effects from 

Gaussian models employed in the derivatives departments of investment banks.  Not 

only were the goals and the ontology different (the rating agencies sought to estimate 

actual probabilities of default; the banks sought to extract risk-neutral probabilities 

and hedging ratios), but the surrounding processes also differed.  Governance (risk 

control and the booking of profit) was certainly one aspect of the use of the Gaussian 

copula in investment banks, but ratings were almost entirely about governance.  With 

many investment managers constrained either by regulation or by organizational 
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mandate to buy only investment-grade securities, the ratings of such securities 

dictated the nature of the market for them. 

 

The result of the embedding of Gaussian copula models in governance via 

ratings was the large-scale ‘gaming’ of them and of the other models employed by the 

ratings agencies. The crisis was caused not by ‘model dopes’, but by creative, 

resourceful, well-informed and reflexive actors quite consciously exploiting the role 

of models in governance. ‘[T]he whole market is rating-agency-driven at some level’, 

one of our earliest interviewees told us, a year before the crisis: ‘the game is …to 

create …tranches which are single-, double- or triple-A rated, and yield significantly 

more than a correspondingly rated [bond]’.  That interviewee did not himself directly 

participate in that ‘game’ (his hedge fund was profiting only indirectly from the fact 

that, as he put it, ‘there are investors who are constrained by ratings’), but other 

interviewees did.  Two told us how they had employed optimization programs to find 

the highest-yielding pools of securities that would still make possible CDOs with 

sufficiently large AAA tranches (although they did not directly say this, the highest-

yielding securities are those that market participants consider riskiest). A third 

interviewee reported that there were companies that discreetly sold software packages 

designed to perform this fatal optimization.  

  

Two dangers, however, attend the above conclusions.  First, our emphasis on 

knowledgeable, reflexive actors rather than model dopes could be read as a collapse 

into simplistic rational-actor, agency-theoretic explanations of the crisis. That is quite 

the opposite of our intention. Culture and rationality are not opposed, even if 

rationality is construed as the pursuit of narrow self-interest. Even the most selfishly 
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rational actor needs to calculate what is in his or her best interest, and that calculation, 

we posit, of necessity partakes in the material cultures of finance. Because those 

cultures differ, and because there is no a priori way to be sure which practices are the 

most efficacious, even the most reflexive, rational actor cannot stand wholly outside 

of finance’s cultures of evaluation.  Nor does the existence of such actors diminish the 

coordinating role of models or other cultural resources.  The way in which Gaussian 

copulas, a class of model that was widely disliked, nevertheless helped achieve 

economically crucial outcomes (in particular the achievement of day-one P&L) shows 

that cultural resources can co-ordinate action even in the presence of widespread 

scepticism as to their worth.  One does not need to invoke cultural dopes to 

understand how cultural resources help produce co-ordinated action.30 

 

The second danger is that this paper’s findings will be read as an endorsement 

of no-arbitrage modelling, one of the hegemonic cultures of modern finance. That is 

emphatically not our intention.  Rather, what we would note is that there are multiple 

mechanisms of counterperformativity, in other words multiple ways in which the 

practical use of a model can undermine its empirical adequacy.31 One such 

mechanism was primary in the credit crisis: the way in which the use by the rating 

agencies of Gaussian copula models with low default probabilities for mortgage-

                                                
30 For a broader statement of this view of social order, see Barnes (1995). 
31 Of course, not all danger comes via counterperformativity, and a specific danger of hedging – the 
distinctive form of trading associated with no-arbitrage modelling – is that because those who practise 
it are seen as mitigating risks, they may be able to build up positions that are much larger (and thus 
actually more dangerous) than those of traders who explicitly take on ‘directional’ risks.  A possible 
example may be ‘the London whale’, the J.P. Morgan credit-derivatives index trader who seems to 
have lost his bank $2 billion via huge sales of protection on the most active series of the most important 
North American corporate credit derivatives index, the CDX.NA.IG. These sales seem to have been 
motivated by hedging, but at the time of writing (18 May 2012) the exact nature of the ‘short’ position 
(purchases of protection) being hedged is unclear. The very difficulty of identifying what was being 
hedged indicates a further issue: a ‘hedge’ is not a self-evident feature of the world, but a contestable 
cultural category. 
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backed securities and only modest correlations among those securities helped create 

(via the ‘gaming’ of those models) an outcome that involved huge levels of highly-

correlated default.  But there are others. In particular, no-arbitrage models may be 

associated with a distinctive mechanism of counterperformativity, in which the 

hedging practices those models demand have effects on the market for the underlying 

assets that undermine the empirical adequacy of the views of asset-price dynamics 

embedded in those models. The most obvious such case is the 1987 stock market 

crash, in which portfolio insurance (a form of hedging inspired by the paradigmatic 

no-arbitrage model, Black-Scholes-Merton) was at least to some degree implicated in 

violent price movements that were grotesquely unlikely on the geometric Brownian 

motion model underpinning Black-Scholes-Merton (author ref). Almost certainly, 

further research will reveal other instances of this mechanism.32  It could be that here 

we have the beginnings of a typology of mechanisms of counterperformativity: 

models used for governance are undermined by being gamed; models used to hedge 

derivatives are undermined by the effects of that hedging on the market for the 

underlying asset.33  

 

                                                
32 If the amount in the previous note of the ‘whale’s’ trading is correct, it had an aspect of this kind, in 
that it led the prices of the CDX.NA.IG to ‘decouple’ from what all models would suggest is a crucial 
determinant of those prices, the costs of credit default swaps on the corporations making up the index’s 
pool. Another example comes from the interviewee quoted in the previous section who told us that the 
credit crisis was not ‘an Armageddon’ for the Gaussian copula base correlation models of CDOs.  He 
immediately went on to tell us of a huge disruption – quite unreported in the press, even the financial 
press – that had taken place in the interest rate market and had been caused by the hedging of interest-
rate derivatives: ‘There were chunky losses all around the City, and that was essentially a model failure 
in that the model didn’t say that [the change in price patterns that took place] could happen.’ 
33 We thank David Stark for pressing on us the importance of a more systematic understanding of 
counterperformativity. A third form (not found in the episodes discussed here) is what might one might 
call ‘deliberate counterperformativity’: the employment of a model that one knows overestimates the 
probability of ‘bad’ events, with a view to reducing the likelihood of those events (for an example, see 
author ref). 
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We end, however, with a speculation about the culture on which we have 

focused, no-arbitrage modelling.  As this paper has shown, the canonical Gaussian 

copula base correlation model played a co-ordinating role within and among 

investment banks: harmonizing practices and prices; at least to some extent 

facilitating communication; providing a shared yardstick that enabled accountants and 

auditors to determine whether a valuation was correct and risk managers to assess 

whether a position was properly hedged; and – therefore – permitting day one P&L, 

the essential lubricant of the trading of derivatives with maturity dates that stretch 

beyond traders’ likely working lives in their banks.  This co-ordinating role of the 

Gaussian copula was visible to our interviewees – and therefore to us – precisely 

because they did not ‘naturalize’ the model: no-one believed that the Gaussian copula 

gave a faithful account of the economic world.  Perhaps, though, that co-ordinating 

role is ever-present in shared models in finance, even those that are taken as capturing 

at least some aspects of the way the world is.  Perhaps the modelling of derivatives in 

investment banking always has an aspect of what one of our interviewees memorably 

called a ‘ballet’, in which highly-paid quants are needed not just to try to capture the 

way the world is, but also to secure co-ordinated action.  Perhaps the quant is actually 

a dancer, and the dance succeeds when the dancers co-ordinate.  But – as Beunza and 

Stark (2010) have suggested in a different context – perhaps the seeds of disaster 

sometimes lie in that very success.   
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Appendix 1: Vasicek’s Large Homogeneous Pool Model 

 

Vasicek applied to firms’ asset values what had become the standard geometric Brownian 

motion model.  Expressed as a stochastic differential equation, 

iiiiii dzAdtAdA σµ +=  

where Ai is the value of the ith firm’s assets, µi and σi are the drift rate and volatility of 

that value, and zi is a Wiener process or Brownian notion, i.e. a random walk in 

continuous time in which the change over any finite time period is normally distributed 

with mean zero and variance equal to the length of the period, and changes in separate 

time periods are independent of each other. 

 

In Vasicek (1987 and 1991), he considered a portfolio of n equally-sized loans, 

to n such corporations, with each loan falling due at the same time and each with the 

same probability of default p.  Making the assumption that the correlation, ρ, between 

the values of the assets of any pair of borrowers was the same, Vasicek showed that in 

the limit in which n becomes very large, the distribution function of L, the proportion 

of the loans that suffer default, is 
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(Figures 2 and 3 show graphs of this function with p = 0.02 and four different values 

of ρ.)  Vasicek went on to show that the assumption of equally-sized loans was not 

necessary, and that this limit result still held so long as 

€ 

wi
i= 1

n

∑ 2 tended to zero as n 

became infinitely large, where wi is the proportion of the portfolio made up of loan i.  

‘In other words, if the portfolio contains a sufficiently large number of loans without 

it being dominated by few loans much larger than the rest, the limiting distribution 

provides a good approximation for the portfolio loss’ (Vasicek, 2002: 160-1). 
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Appendix 2: ‘Broken Heart’ Syndrome and a Bivariate Copula 
Function 
 
 
Let X be the age at death of a woman and Y the age at death of her husband.  In the 

notation of Frees, Carriere and Valdez (1996), let H(x,y) be the joint distribution 

function of X and Y: i.e. H(x,y) is the probability that the wife dies at or before age x, 

and that the husband dies at or before age y.  Let 1F (x) and 2F (y) be the 

corresponding marginal distribution functions: e.g., 1F (x) is the probability simply 

that the wife dies at or before age x. 

 
 A copula function C ‘couples’ (Frees, Carriere and Valdez, 1996: 236) 1F  

and 2F , the two marginal distributions, to form the joint distribution H.  That is,  

 

  H (x,y) = C[ 1F (x), 2F (y)] 

 

If C, 1F  and 2F  are all known, then obviously H is known.  What Sklar (1959) had 

shown was that the less obvious converse also held: ‘if H is known and if 1F  and 2F  

are known and continuous, then C is uniquely determined’ (Frees, Carriere and 

Valdez, 1996: 236). 
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Appendix 3: Index Tranches and Base Correlation 

 

The credit indices that make ‘correlation trading’ possible are, in effect, a set of 

standardized, synthetic single-tranche CDOs.  Consider, for instance, the DJ Tranched 

TRAC-X Europe, set up by J.P. Morgan and Morgan Stanley, the example of an index 

used in McGinty et al. (2004).  Traders could buy and sell ‘protection’ against all 

losses caused by defaults or other ‘credit events’ suffered by the corporations whose 

debts were referenced by the index, or against specific levels of loss: 0-3 percent, 3-6 

percent, 6-9 percent, 9-12 percent and 12-22 percent.  Instead of running a Gaussian 

copula ‘backwards’ to work out the implied correlation (the ‘compound’ correlation, 

in the terminology of the J.P. Morgan team) of each these tranches, the J.P. Morgan 

team recommended inferring from the ‘spreads’ (costs of ‘protection’) on the tranches 

that were actually traded what the spreads would be on tranches of 0-6 percent, 0-9 

percent, 0-12 percent and 0-22 percent.  Running a Gaussian copula backwards on the 

traded 0-3 percent tranche and on these untraded tranches generates the ‘base 

correlations’ implied by the spreads in the index market. 
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Figure 1.  Evaluation cultures and organizations: a schematic representation.

Orgn. #3Orgn. #1 Orgn. #2

Evaluation
Culture #3

Evaluation
Culture #2

Evaluation
Culture #1



 70 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Probability distribution of losses on large portfolio of loans, each with 
default probability of 0.02, and identical pairwise asset correlations of 0.01 
(upper graph) and 0.05 (lower graph). 
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Figure 3.  Probability distribution of losses on large portfolio of loans, each with 
default probability of 0.02, and identical pairwise asset correlations of 0.1 (upper 
graph) and 0.99 (lower graph). 
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Figure 4. A CDO (simplified and not to scale) 
 
                                      capital investments by investors 
                                        payments to investors 
 
Investors in lower tranches receive payments only if funds remain after payments due to investors 
in more senior tranches are made.  What is shown is a ‘cash CDO’; in a ‘synthetic CDO’ the special 
purpose vehicle ‘sells protection’ on the assets via credit default swaps rather than buying them.   

Special purpose vehicle: 
uses money from investors 
to buy pool of debt (e.g. 
corporate loans, bonds) and 
uses cash-flow from it to 
make payments to investors. 
 

Senior tranche or tranches 
(normally divided in two, 
with super-senior tranche 
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tranches 

asset n 

asset 1 

asset 2 

. 

. 

. 

. 

. 

.  
equity tranche  
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