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Abstract 

The motivation for this paper is to apply a statistical arbitrage technique of pairs 
trading to high-frequency equity data and compare its profit potential to the standard 
sampling frequency of daily closing prices. We use a simple trading strategy to 
evaluate the profit potential of the data series and compare information ratios yielded 
by each of the different data sampling frequencies. The frequencies observed range 
from a 5-minute interval, to prices recorded at the close of each trading day. 
 
The analysis of the data series reveals that the extent to which daily data are 
cointegrated provides a good indicator of the profitability of the pair in the high-
frequency domain. For each series, the in-sample information ratio is a good 
indicator of the future profitability as well. 
 
Conclusive observations show that arbitrage profitability is in fact present when 
applying a novel diversified pair trading strategy to high-frequency data. In particular, 
even once very conservative transaction costs are taken into account, the trading 
portfolio suggested achieves very attractive information ratios (e.g. above 3 for an 
average pair sampled at the high-frequency interval and above 1 for a daily sampling 
frequency). 
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1. INTRODUCTION 

In this article a basic pair trading (long-short) strategy is applied to the constituent 
shares of the Eurostoxx 50 index. A long-short strategy is applied to shares sampled 
at 6 different frequencies, namely 5-minute, 10-minute, 20-minute, 30-minute, 60-
minute and daily sampling intervals. The high frequency data spans from 3rd July 
2009 to 17th November 2009, our daily data spans from 3rd January 2000 to 17th 
November 2009. 
 
We introduce a novel approach, which helps enhance the performance of the basic 
trading strategy. The approach consists in selecting the pairs for trading based on 
the best in-sample information ratios and the highest in-sample t-stat of the ADF test 
of the residuals of the cointegrating regression sampled a daily frequency. We form 
the portfolios of 5 best trading pairs and compare the performance with appropriate 
benchmarks. 
 
Yet another improvement we introduce is the use of the high-frequency data. The 
advantage of using the high-frequency data is higher potentially achievable 
information ratio1 compared to the use of daily closing prices, see Aldridge (2009) 
and thus higher attractivity for investors.  
 
Market neutral strategies are generally known for attractive investment properties, 
such as low exposure to the equity markets and relatively low volatility, see Capocci 
(2006) but recently the profitability of these strategies has deteriorated, see Gatev et 
al. (2006). While Gatev et al. (2006) only go back to 2002, the Hedge Fund Equity 
Market Neutral Index (HFRXEMN Index in Bloomberg) which started one year later, 
i.e. 2003, does not show the supposed qualities for which market neutral strategies 
are attractive, i.e. steady growth and low volatility. The industry practice for market 
neutral hedge funds is to use a daily sampling frequency and standard cointegration 
techniques to find matching pairs, see Gatev et al. (2006, p. 10), who “use this 
approach because it best approximates the description of how traders themselves 
choose pairs.” Thus, by modifying an already well-known strategy using intraday 
data we may obtain an “edge” over other traders and compare the results of 
simulated trading using intraday data on various sampling frequencies with daily 
data.  
 

The rest of the paper is organized as follows. In section 2, we present the literature 
review, section 3 describes the data used and section 4 explains the methodology 
implemented. Section 5 presents the pair trading model, section 6 gives the out-of-
sample performance results of the pair trading strategy taking transaction costs into 
account, while sections 7 presents our results in a diversified trading portfolio 
context. Section 8 concludes. 
 

2. LITERATURE REVIEW 

a. Market neutral strategies 

Pair trading is a well-known technique, having been developed in 1980 by a team of 
scientists lead by a Wall Street quant Nunzio Tartaglia, see Gatev et al. (2006). The 

                                                 
1
 Information ratio is calculated as the ratio of annualized return to annualized standard deviation. 
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strategy is widely documented in current literature including Enders and Granger 
(1998), Vidyamurthy (2004), Dunis and Ho (2005), Lin et al. (2006) and Khandani 
and Lo (2007).  
 
The general description of the technique is that a pair of shares is formed, where the 
investor is long one and short another share. The rationale is that there is a long-
term equilibrium (spread) between the share prices, and thus the shares fluctuate 
around that equilibrium level (the spread has a constant mean). The investor 
evaluates the current position of the spread based on its historical fluctuations and 
when the current spread deviates from its historical mean by a pre-determined 
significant amount (measured in standard deviations), the spread is subsequently 
altered and the legs are adjusted accordingly. The investor bets on the reversion of 
the current spread to its historical mean by shorting/going long an appropriate 
amount of each share in a pair. The appropriate amount of each share is expressed 
by the variable beta, which tells the investor the number of the shares X he has to 
short/go long, for each 1 share Y. There are various ways of calculating beta. Either 
it can be fixed, or it can be time-varying. In this paper to make beta time-varying, we 
will use rolling ordinary least squares (OLS) regression, double exponential 
smoothing prediction (DESP) model  and the Kalman filter. More about these 
methods can be found in the section about time adaptive models and methodology. 
 

b. Market neutral strategies and high frequency data 

From an extensive review of literature there appears to be only one relevant study 
regarding high frequency market neutral trading systems, see Nath (2003). Nath 
(2003) looks at market neutral strategies in US fixed-income market, nevertheless 
literature pertaining to high frequency market neural trading systems is extremely 
limited. 
 

c. Cointegration 

Cointegration is a quantitative technique based on finding long-term relations 
between asset prices introduced in a seminal paper by Engle and Granger (1987). 
Thus, cointegration might help identify potentially related pairs of assets. However, in 
this paper we will consider all the possible pairs from the same industry, not only 
cointegrated ones. The reason is that in this way we will be able to measure whether 
the cointegrated pairs in the in-sample period perform better in the out-of-sample 
period than the non-cointegrated ones.  
 
Another approach was developed by Johansen (1988), which can be applied to more 
than two assets at the same time. The result is a set of cointegrating vectors that can 
be found in the system. The spread between the assets is not the one with the 
lowest variance, as was the OLS case, but the most stable one in the long-term, see 
Alexander (2001). According to Alexander (2001, p. 361) the Engle and Granger 
(1987) methodology is preferred in financial applications due to its simplicity and 
lower variance, important point to consider from the risk management perspective. 
As in this paper we only deal with pairs of shares, we also prefer the simpler Engle 
and Granger (1987) methodology. 
 
There are also many applications of cointegration in the world of investing, for 
instance index replication, which exploits long-term qualities of cointegration 
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requiring only occasional portfolio rebalancing [see e.g., Dunis and Ho (2005), 
Alexander and Dimitriu (2002)]. Then, there are market neutral arbitrage strategies 
based on cointegration, where one enters the trade when the relationship is away 
from long-term mean, and exits it when it has returned to the long-term mean again. 
Burgess (2003), Lin et al. (2006) or the work of Galenko et al. (2007), who term their 
work high-frequency trading, just use daily closing prices among 4 world indexes, 
instead of real intraday continuous or intraday minute data. 
 

d. Time adaptive models 

Dunis and Shannon (2005) use time adaptive betas with the Kalman filter 
methodology (see Hamilton (1994) or Harvey (1981) for a detailed description of the 
Kalman filter implementation). The Kalman filter is a popular technique when time 
varying parameters in the model need to be estimated (see Choudhry and Wu 
(2009), Giraldo Gomez (2005), Brooks et al. (1998) and Burgess (1999)). These 
papers support the Kalman filter method as a superior technique for adaptive 
parameters. It is a forward looking methodology, as it tries to predict the future 
position of the parameters as opposed to using a rolling OLS regression, see Bentz 
(2003). 
 
Alternatively DESP models can be used for adaptive parameter estimation. 
According to LaViola (2003a) and LaViola (2003b) DESP models offer comparable 
prediction performance to the Kalman filter, with the advantage that they run 135 
times faster. 
 

e. Hedge funds 

The pair trading technique is used primarily by hedge funds and there is a whole 
distinct group bearing the name “market neutral funds”, see Khandani and Lo (2007) 
for the definition or Capocci (2006) for a closer examination of their properties. 
Hedge funds employ dynamic trading strategies, see Fung and Hsieh (1997). Those 
strategies are dramatically different from the ones employed by mutual funds and 
this enables them to offer investors more attractive investment properties (expressed 
by e.g. information ratio), see Liang (1999). 
 

3. THE EUROSTOXX 50 INDEX AND RELATED FINANCIAL DATA 

We use 50 stocks that formed the Eurostoxx 50 index as of 17th November 2009, 
see Appendix f for the names of shares we used. The data downloaded from 
Bloomberg includes 6 frequencies: 5-minute, 10-minute, 20- minute, 30-minute and 
60-minute data (high-frequency data) and daily prices. We call all the data related 
with the minute dataset high-frequency for brevity purposes. 
 
Our database of minute data spans from 3rd July 2009 to 17th November 2009, both 
dates included2. We download the data from Bloomberg, which only stores the last 
100 business days worth of intraday data. We downloaded the data on 17th 

                                                 
2
 The high-frequency database includes prices of transactions for the shares that take place closest in 

time to the second 60 of particular minute-interval (e.g. transaction recorded just before the end of 
any 5-minute interval, or whichever selected interval in case of other high-frequencies), but not having 
taken place after second 60, so that if one transaction took place at e.g. 9:34:58 and the subsequent 
one at 9:35:01, the former transaction would be recorded as of 9:35. 
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November 2009 and that is why our intraday data span from 3rd July 2009. Intraday 
stock prices are not adjusted automatically by Bloomberg for dividend payments and 
stock splits and we had to adjust them ourselves.3  Our database only includes the 
prices at which the shares were transacted, we do not dispose of bid and ask prices. 
Therefore some of our recorded prices are bids and some of them asks depending 
on which transaction was executed in each particular case. As for the number of 
data points we have at our disposal, we have as many as 8.000 data points when 
data are sampled at 5-minute interval for the last 5 months. For lower frequencies, 
the amount of data falls linearly with decreasing frequency. For example, in the case 
of 10-minute data we have around 4.000 data points whereas we only have 2.000 
data points for 20-minute data. 
  
The database that includes daily closing prices spans from 3rd January 2000 to 17th 
November 2009, including the dates mentioned. The data are adjusted for dividend 
payments and stock splits4. Some shares do not date back as far as 3rd January 
2000, and as a consequence the pairs that they formed contain lower amount of data 
points.5 
 
In Table 1 below we show the start and the end of the in- and out-of-sample periods 
for all the frequencies. For high-frequency data the in- and out-of-sample periods 
have the same lengths. For daily data, the in-sample period is much longer than the 
out-of-sample period. The start of the out-of-sample period is not aligned between 
daily and high-frequency data. If the out-of-sample period for daily data started at the 
same date as is the case for high-frequency data, it would not contain enough data 
points for the out-of-sample testing (had it started on 10th September, it would have 
contained only as little as 50 observations and this is why we start the out-of-sample 
period for daily data at the beginning of 2009, yielding 229 data points). 
 

 
Table 1. Specification of the in- and out-of-sample periods and number of data points contained in each 

We used the Bloomberg sector classification with the “industry_sector” ticker. We 
divide the shares in our database into 10 industrial sectors: Basic Materials, 
Communications, Consumer Cyclical, Consumer Non-cyclical, Diversified, Energy, 
Financial, Industrial, Technology and Utilities. Also note that there is only one share 
in the category “diversified” and “technology” in Appendix e, which prevents both 
these shares from forming pairs. 
 

                                                 
3
 Daily data are adjusted automatically by Bloomberg. Concerning intraday data, first we obtain the 

ratio of daily closing price (adjusted by Bloomberg) to the last intraday price for that day (representing 
the unadjusted closing price). Then we multiply all intraday data during that particular day by the 
calculated ratio. We repeat the procedure for all days and shares for which we have intraday data.  
4
 Daily data are automatically adjusted by Bloomberg. 

5
 In particular, four shares do not date back from 3rd January 2000 (Anheuser-Busch starts from 30th 

November 2000, Credit Agricole S.A. starts from 13th December 2001, Deutsche Boerse AG starts 
from 5th February 2001 and GDF Suez starts from 7th July 2005). 
 

No. points No. points

5-minute data 03 July 2009 09 September 2009 4032 10 September 2009 17 November 2009 4032

10-minute data 03 July 2009 09 September 2009 2016 10 September 2009 17 November 2009 2016

20-minute data 03 July 2009 09 September 2009 1008 10 September 2009 17 November 2009 1008

30-minute data 03 July 2009 09 September 2009 672 10 September 2009 17 November 2009 672

60-minute data 03 July 2009 09 September 2009 336 10 September 2009 17 November 2009 336

Daily data 03 January 2000 31 December 2008 2348 01 January 2009 17 November 2009 229

In-sample Out-of-sample
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For our pair trading methodology, we select all the possible pairs from the same 
industry. This is not a problem with daily data, as we have daily closing prices for the 
same days for all the shares in the sample. In contrast, at times an issue of liquidity 
with high-frequency data occurs where, for a certain pair, one share has a price 
related to a particular minute whilst no price is recorded for the other due to no 
transaction having taken place in that minute. In such an event, spare prices were 
dropped out so that we were left with two price time series with the same number of 
data points in each, where the corresponding prices were taken at approximately the 
same moment (same minute). However, such a situation presents itself only rarely, 
as these 50 shares are the most liquid European shares listed. 
 

4. METHODOLOGY 

In this part we describe in detail the techniques which we use in simulated trading. 
First we describe the Engle and Granger (1987) cointegration approach. Then, in 
order to make the beta parameter adaptive, we describe techniques which we used, 
namely rolling OLS, the DESP model and the Kalman filter.  
 
However, as using the Kalman filter proves to be a superior technique for the beta 
calculation as will be shown later, only the Kalman filter is used for the calculation of 
the spread to obtain the final results presented in the paper. 
 

a. Cointegration model 

First, we form the corresponding pairs of shares from the same industry. Once these 
are formed, we evaluate whether the pairs are cointegrated in the in-sample period. 
We investigate in the empirical part whether the fact that pairs are cointegrated or 
not helps improve the profitability of the pairs selected. Thus, we do not disqualify 
any pairs at first and also take into account the ones that are not cointegrated. 
 
The 2-step approach proposed by Engle and Granger (1987) is used for the 
estimation of the long-run equilibrium relationship where first the OLS regression 
shown below is performed.  
 

 t t tY X    (1) 

 
In the second step the residuals of the OLS regression are tested for stationarity 
using the Augmented Dickey-Fuller unit root test (hereinafter ADF) at 95% 
confidence level, see Said and Dickey (1984). 
 

b. Rolling OLS 

To calculate the spread, first we need to calculate the rolling beta using rolling OLS. 
Beta at time t is calculated from n previous points. 
 

 t t t tY X    (2) 

 

However, the rolling OLS approach is the least favoured by the literature due to 
“ghost effect”, “lagging effect” and “drop-out effect”, see Bentz (2003). 
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We optimized the length of the OLS rolling window using genetic optimization.6 For 
more details on the genetic optimization, see Goldberg (1989) and Conn et al. 
(1991). The objective of the genetic optimization was to maximize the average in-
sample information ratio for 67  randomly chosen pairs8  at a 20-minute sampling 
frequency. The optimized parameter was the length of the rolling window for the OLS 
regression in the in-sample period. Thus, the genetic algorithm was searching for the 
optimum length of the rolling window in the in-sample period with the objective to 
maximize the in-sample information ratio. The best values found for the in-sample 
period were subsequently used in the out-of-sample period as well. The same 6 
pairs at the same sampling frequency with the same objectives were optimized also 
in case of the DESP model and Kalman filter. 
 
The average OLS rolling window length for the 6 pairs found using genetic algorithm 
was 200 points, which was then used for all the remaining pairs and frequencies in 
the out-of-sample period. 
 

c. Double exponential-smoothing prediction model 

Double exponential smoothing-based prediction (DESP) models are defined by two 
series of simple exponential smoothing equations. 
 

First, we calculate the original t  series, where t
t

t

Y

X
  at each time step. Once we 

have t  series, we smooth it using the DESP model. DESP model is defined by the 

following 2 equations. 

   

 1(1 )t t tS S      (3) 

 

 1(1 )t t tT S T       (4) 

 

where t  is an original series at time t, tS  is a single exponentially smoothed series, 

tT  a double exponentially smoothed series and   the smoothing parameter. At each 

point t in time, the prediction of the value of t in time period t+1 is given by: 

 

 
1t t ta kb     (5) 

 

 2t t ta S T   (6) 

 ( )
1

t t tb S T



 


 (7) 

 

                                                 
6
 The optimization was performed in MATLAB. The genetic algorithm was run with default options. 

The optimization started with 100 generations and both, mutation and crossover, were allowed. 
7
 We only optimized the parameters for 6 pairs due to the length of the genetic optimization process. 

8
 MATLAB function rand was used to generate 6 random numbers from 1 to 176 (as rand only 

generates numbers from 0 to 1, the result of rand was multiplied by 176 and rounded to the nearest 
integer towards infinity with the function ceil). 176 is the number of all the possible pairs out of 50 
shares, provided that only the pairs of shares from the same industry are selected. 
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where 
1t 
 is the prediction of the value of t in time period t+1, ta  the level 

estimated at time t and tb  the trend estimated at time t and k  the number of look-

ahead periods. 
  

We optimized the   and k  parameters present in Equations (3), (4), (7) and (5)

respectively. Optimized values for   and k  are 0.8126 and 30 respectively.  
 

d. Time-varying parameter models with Kalman filter 

The Kalman filter allows parameters vary over time and it is more optimal than rolling 
OLS for adaptive parameter estimation, see Dunis and Shannon (2005). Further 
details of the model and estimation procedure can be found in Harvey (1981) and 
Hamilton (1994). 
 
The time varying beta model can be expressed by the following system of state-
space equations: 
 

 t t t tY X    (8) 

 

 1t t t     (9) 

 

where tY  is the dependent variable at time t, t  is time-varying coefficient, tX  is the 

independent variable at time t, and t  and t  are independent uncorrelated error 

terms. Equation (8) is known as a measurement equation and Equation (9) as the 
state equation, which defines beta as a simple random walk in our case. We thus 
use similar model to Dunis and Shannon (2005) or Burgess (1999). For the full 
specification of the Kalman filter model please see Appendix a. 
 
We optimized the noise ratio, see Appendix a for the noise ratio definition. The 
resulting value for the noise ratio of 3.0e-7 was then used for all the remaining pairs 
and frequencies. 
 

5. THE PAIR TRADING MODEL 

The procedures described in this section were applied to both daily and high-
frequency data. The pairs had to belong to the same industry to be considered for 
trading. It was the only condition in order to keep our strategy simple. This leaves us 
with pairs immune to industry-wide shocks. 

a. Pair trading: a self-financing strategy 

A pair trading strategy requires one to be long one share and short another. Pair 
trading is a so-called self-financing strategy, see e.g. Alexander and Dimitriu (2002), 
meaning that an investor can borrow the amount he wants to invest, say from a 
bank. Then, to be able to short a share, he deposits the borrowed amount with the 
financial institution as collateral and obtains borrowed shares. Thus, the only cost he 
has to pay is the difference between borrowing interest rates paid by the investor 
and lending interest rates paid by the financial institution to the investor. 
Subsequently, to go short a given share, the investor sells the borrowed share and 
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obtains cash in return. From the cash he finances his long position. On the whole, 
the only cost is the difference between both interest rates (paid vs. received). A more 
realistic is the situation where an investor does not have to borrow capital from a 
bank in the beginning (e.g. the case of a hedge fund that disposes of capital from 
investors) allows us to drop the difference in interest rates. Therefore, a short 
position would be wholly financed by an investor. In our first scenario the investor 
would be paid interest from a financial institution which lends him shares, however 
this interest was neglected for the ease of calculation. As our strategy proves robust 
and profitable, it does not affect our conclusions, it could only affect them on the 
positive side. 

b. Spread calculation 

First, we calculate the spread between the shares. The spread is calculated as 

 
t tt Y t Xz P P   (10) 

 

where tz  is the value of the spread at time t, 
tXP  is the price of share X at time t, 

tYP

is the price of share B at time t and t  is the adaptive coefficient beta at time t. 

 
Beta was calculated at each time step using 3 of the methods described in the 
methodological part, namely the rolling OLS, the DESP model and the Kalman filter. 
 
We did not include a constant in any of the models. Intuitively speaking, when the 
price of one share goes to 0, why would there be any threshold level under which the 
price of the second share cannot fall? Furthermore, by not including a constant, we 
obtain a model with fewer parameters to be estimated. 
 

c. Entry and exit points 

First we estimate the spread of the series using Equation (10). The spread is then 
normalized by subtracting its mean and dividing by its standard deviation. The mean 
and the standard deviation are calculated from the in-sample period and are then 
used to normalize the spread both in the in- and out-of-sample periods. 
 
We sell (buy) the spread when it is 2 standard deviations above (below) its mean 
value and the position is liquidated when the spread is closer than 0.5 standard 
deviation to its mean. We decided to wait for 1 period before we enter into the 
position, to be on the safe side and make sure that the strategy is viable in practice. 
For instance, in case of 5-minute data, after the condition for entry has been fulfilled, 
we wait for 5-minutes before we enter the position. 
 
We chose the investment to be money-neutral, thus the amounts of euros to be 
invested on the long and short side of the trade to be the same.9 As the spread is 

                                                 
9
 Above we explained that our positions are money neutral on both sides of the trade. However in 

practice this is not always possible, as an investor is not able to buy share fractions. Thus, it might 
occur that we wish to be long 1000 euros worth of share A and short 1000 euros worth of share B. But 
the price of share X is 35 euros and the price of share Y is 100 euros. In this case we would need to 
buy 28.57 shares X and sell 10 shares Y. In the paper we simplified the issue and supposed that an 
investor is able to buy fractions of the shares. The reason is that one is able to get as close as one 
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away from its long term mean, we bet on the spread reverting to its long term mean, 
but we do not know whether we will gain more from our long or short position10. We 
do not assume rebalancing once we enter into the position. Therefore, after an initial 
entry into the position with equal amounts of euros on both sides of the trade, even 
when due to price movements both positions stop being money-neutral, we do not 
rebalance the position. Only two types of transactions are allowed by our 
methodology, entry into a new position, and total liquidation of the position we were 
in previously.  
 
For an illustration, in Figure 1 below we show the normalized spread and the times 
when the positions are open. When the dotted line is equal to 1(-1), the investor is 
long (short) the spread. 

 
Figure 1. The normalized spread of the pair consisting of Bayer AG and Arcelor Mittal sampled a 20-minute interval 

In Figure 2 we show the cumulative equity curve for the pair consisting of Bayer AG 
and Arcelor Mittal11 . Note how the investment lost almost 10% around half the 
sample as position was entered into too soon and continued to move against the 
investor. Finally it reverted and recovered almost all the capital lost. 
 

                                                                                                                                                        
wishes to the money neutral position in practice. The only thing one has to do is to increase the 
amount of money on both sides of the trade. If in the previous example we wished to be long and 
short 100,000 euros, we would buy 2857 shares X and 1000 shares Y. 
 
10

 We do not know which of the cases will occur in advance: whether the shares return to their long 
term equilibrium because the overvalued share falls more, the undervalued rises more, or both 
perform the same. 
11

 The pair was chosen only for an illustration of the approach. Both shares are from the same 
industry: Basic materials, see Appendix e. In Figure 2 the same pair of shares is shown as was the 
case in Figure 1. 
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Figure 2. Cumulative equity curve in percent of the pair trading strategy applied to Bayer AG and Arcelor Mittal 

sampled at a 20-minute interval 

In the next section we explain the different indicators calculated in the in-sample 
period, trying to find a connecting link with the out-of-sample information ratio and as 
a consequence offer a methodology for evaluating the suitability of a given pair for 
arbitrage trading. 
 

d. Indicators inferred from the spread 

All the indicators are calculated in the in-sample period. The objective is to find the 
indicators with high predictive power of the profitability of the pair in the out-of-
sample period. These indicators include the t-stat from the ADF test (on the residuals 
of the OLS regression of the two shares), the information ratio and the half-life of 
mean reversion. 

i. Half-life of mean reversion 

The half-life of mean reversion in number of periods can be calculated as:  
 

 
ln(2)

Halflife
k

   (11) 

 
where k is the median unbiased estimate of the strength of mean reversion from 
Equation (12), see Wu et al. (2000, p. 759) or Dias and Rocha (1999, p. 24). 
Intuitively speaking, it is half the average time the pair usually takes to revert back to 
its mean. Thus, pairs with low half-life should be preferred to high half-lives by 
traders. 
 
Equation (12) is called the OU equation and can be used to calculate the speed and 
strength of mean reversion, see Mudchanatongsuk et al. (2008). The following 
formula is estimated on the in-sample spread: 
 

  t t tk z dt Wdz d     (12) 
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where   is the long-term mean of the spread, tz  value of the spread at particular 

point in time, k  the strength of mean reversion,   the standard deviation and tW  the 

Wiener process. The higher the k , the faster the spread tends to revert to its long-
term mean. Equation (12) is used indirectly in the paper, it is just the supplementary 
equation from which we calculate the half-life of mean reversion of the pairs. 
 

ii. Information ratio 

We decided to use the information ratio (IR), a widely used measure among 
practitioners which gives an idea of the quality of the strategy12. An annualized 
information ratio of 2 means that the strategy is profitable almost every month. 
Strategies with an information ratio around 3 are profitable almost every day, see 
Chan (2009). For our purpose we calculated the information ratio as: 
 

     .       .252
R

Annualized Information Ratio hours traded per day


  (13) 

 

where R  is the average return we obtain from the strategy and   is the standard 
deviation of return of the strategy. However, it is not the perfect measure and 
Equation (13) overestimates the true information ratio if returns are autocorrelated, 
see e.g. Sharpe (1994) or Alexander (2008, p. 93). 
 

6. OUT-OF-SAMPLE PERFORMANCE AND TRADING COSTS 

a. Return calculation and trading costs 

The return in each period is calculated as 

 
1 1

ln( / ) ln( / )
t t t tt X X Y YRet P P P P

 
   (14) 

 

where 
tXP  is the price of the share we are long in period t, 

1tXP


 the price of the share 

we are long in period t-1, 
tYP  the price of the share we are short in period t, and 

1tYP


 

the price of the share we are short in period t-1. 

We consider conservative total transaction costs of 0.3% one-way in total for both 
shares, similar to e.g. Alexander and Dimitriu (2002). We are dealing with the 50 
most liquid European shares in this paper. Transaction costs consist of 0.1%13 of 
brokerage fee for each share (thus 0.2% for both shares), plus a bid-ask spread for 
each share (long and short) which we assume to be 0.05% (0.3% in total for both 
shares). 
 

                                                 
12

 IR has now become more popular among practitioners in quantitative finance than Sharpe ratio. 
The formula for a Sharpe ratio (SR) calculation can be found in Appendix g. Note that the only 
difference between IR and SR is the risk free rate in the denominator of SR. 
13

 For instance Interactive Brokers charges 0.1% per transaction on XETRA market (see 
http://www.interactivebrokers.com/en/p.php?f=commission and 
http://www.interactivebrokers.com/en/accounts/fees/euroStockBundlUnbund.php?ib_entity=llc, the 
bundled cost structure. Last accessed 14

th
 February 2010) 

http://www.interactivebrokers.com/en/p.php?f=commission
http://www.interactivebrokers.com/en/accounts/fees/euroStockBundlUnbund.php?ib_entity=llc


13 

 

We calculate a median bid-ask spread for the whole time period investigated for 6 
randomly chosen stocks sampled at a 5-minute interval. We chose 6 stocks using 
the same randomization procedure which we used to select 6 random pairs for the 
genetic optimization purposes for rolling OLS, DESP and Kalman filter. Median value 
of the 6 median values of the bid-ask spreads was 0.05%. The bid-ask spread at 
every moment was calculated as: 
 

 
( )

/  
( )

A B

A B

abs P P
Bid Ask Spread

avg P P





 (15) 

 

where AP  is the ask price of a share at any particular moment and BP  is the bid price 

at the same moment.  
 
We buy a share which depreciates significantly whilst on the other hand we sell 
those that appreciate significantly. Therefore in real trading it may be possible not to 
pay the bid-ask spread. The share that we buy is in a downtrend. The downtrend 
occurs because transactions are executed every time at lower prices. And the lower 
prices are the result of falling ask prices which get closer to (or match) bid prices, 
thus effectively one does not have to pay bid-ask spread and transacts at or close to 
the bid quote. The opposite is true for rising prices of shares. 
 

b. Preliminary out-of-sample results 

In Table 2 we present the out-of-sample information ratios excluding transaction 
costs for the pair trading strategy at all the frequencies we ran our simulations for. 
Results across all the three methods used are displayed. 
 
Results are superior for the Kalman filter method for the most sampling frequencies. 
That is why we focus exclusively on this methodology in our further analysis. It is 
interesting to note that rolling OLS and DESP do not offer clearly better results 
compared to the case when beta is fixed. 
 

 
 

Table 2. Out-of-sample information ratios for the simulated pair trading strategy at different frequencies. 

Transaction costs have not been considered. 

From Table 2 it is also clear that higher sampling frequencies offer more attractive 
investment characteristics then using daily data for all the methodologies. 
 
In Figure 3 we present adaptive betas calculated using the three approaches 
mentioned. Both the OLS and DESP beta seem to fluctuate around the Kalman filter 
beta. 
 

AVERAGE VALUES Fixed Beta rolling OLS DESP Kalman

5-minute data 0.96 0.92 1.27 1.21

10-minute data 0.96 0.88 0.77 1.27

20-minute data 0.90 1.03 0.75 1.19

30-minute data 0.97 1.09 0.88 1.34

60-minute data 0.94 0.91 0.99 1.23

Daily data 0.49 -0.33 0.52 0.74
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Figure 3. Various betas calculated for the Bayer AG and Arcelor Mittal pair sampled at a 20-minute interval 

In Figure 4 we show the distribution of the information ratios including transaction 
costs for the 20-minute sampling frequency with the Kalman filter used for the beta 
calculation. 

 
Figure 4.Distribution of information ratios for a 20-minute sampling frequency. One-way transaction costs of 0.4% 

have been considered.  

From the above figure it is clear that an average pair trading is profitable and that 
pairs are mainly situated to the right of 0.  
 
We also present the distribution of information ratios for daily data to be able to 
investigate more closely the difference between higher and lower sampling 
frequencies, see Figure 5. 

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1 501 1001 1501 2001

V
al

u
e 

o
f b

et
a

Time

Kalman filter

OLS

DESP

0

4

8

12

16

20

-1.25 0.00 1.25 2.50 3.75 5.00 6.25

Series: _20_MIN
Sample 1 176
Observations 161

Mean       0.773532
Median   0.533970
Maximum  6.679400
Minimum -2.037800
Std. Dev.   1.492319
Skewness   0.702468
Kurtosis   3.784545

Jarque-Bera  17.37027
Probability  0.000169

Information ratios

O
b
s
e
rv

a
ti
o
n
s



15 

 

 
Figure 5. Information ratios of the pairs using daily sampling frequency. One-way transaction costs of 0.4% have 

been considered. 

One important thing to consider is the lower amount of observations. The out-of-
sample period for daily data included has only 229 data points (see Table 1) when 
compared to Figure 4 and the pairs that did not record any transaction were 
excluded. 
 
Again, as in Figure 4, majority of the information ratios is situated in positive territory. 
Distributions of information ratios for other sampling frequencies can be seen in 
Appendices b-e. 
 
The summary statistics for all trading frequencies can be seen in Table 3 below. The 
main difference between the daily data and high-frequency data is the maximum 
drawdown and maximum drawdown duration, see Magdon-Ismail (2004). Both these 
measures are of primary importance to investors. The maximum drawdown defines 
the total percentage loss experienced by the strategy before it starts “winning” again. 
In other words, it is the maximum negative distance between the local maximum and 
subsequent local minimum measured on an equity curve and gives a good measure 
of the downside risk for the investor (see Appendix g). 
 

 
 

 

Table 3. The out-of-sample annualized trading statistics for pair trading strategy with the Kalman filter used for the 

beta calculation 
 
On the other hand, maximum drawdown duration is expressed as the number of 
days since the drawdown has begun until the equity curve returns to the same 
percentage gain as before. Both these measures are important for the psychology of 
investors, because when the strategy is experiencing a drawdown, investors might 
start questioning the strategy itself.  
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AVERAGE VALUES 5-minute 10-minute 20-minute 30-minute 60-minute Average HF Daily

Information ratio (ex TC) 1.21 1.27 1.19 1.34 1.23 1.25 0.74

Information ratio (incl. TC) 0.26 0.64 0.77 0.97 0.97 0.72 0.70

Return (ex TC) 16.03% 17.58% 17.12% 20.25% 18.71% 17.94% 19.55%

Return (incl. TC) 1.92% 7.83% 10.33% 14.08% 14.08% 9.65% 18.62%

Volatility  (ex TC) 17.55% 18.51% 18.57% 19.35% 19.57% 18.71% 29.57%

Positions taken 49 34 24 21 17 29 3

Maximum drawdown (ex TC) 4.09% 4.25% 4.07% 4.07% 4.08% 4.11% 13.61%

Maximum drawdown duration (ex TC) 5 10 10 20 19 13 79
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Both statistics are significantly higher for daily data than for any higher frequency. 
The maximum drawdown for daily data is 13.61%, whereas it is 4.11% for high-
frequency data. The maximum drawdown duration ranges from 5 to 20 days for the 
high-frequency data and is as much as 79 days for the daily data. 
 

Information ratios (excluding trading costs) are slightly higher for high-frequency data 
as has already been shown in Table 2. But when trading costs are considered, high-
frequency data are more affected than daily data, as one would expect (due to the 
higher number of transaction). For instance the information ratio for the 5-minute 
data drops from an attractive 1.21 to only 0.26 when the trading costs are 
considered. Average information ratio of the pairs sampled at high-frequencies is 
0.72, very similar to the daily sampling frequency (0.70). However, we consider very 
conservative trading costs which penalize high-frequency data too much, and the 
information ratio achievable in the real trading might be considerably higher.  
 

c. Further investigations 

We further analyze our results below and address some interesting issues from an 
investment perspective. 
 

i. Relationship between the in-sample t-stats and the out-of-sample 
information ratios 

We examine whether the in-sample cointegration of a given trading pair implies 
better out-of-sample performance. One can logically assume that a higher 
stationarity of the residual from the cointegration equation implies a higher 
confidence that the pair will revert to its mean. Thus we would expect a significant 
positive correlation between the t-stat of the ADF test on the OLS residuals and the 
out-of-sample information ratio. We perform this analysis only on daily data. We deal 
with intraday data later. 
 
We bootstrap (with replacement) the pairs consisting of information ratios and t-
stats14. The t-stat is obtained from the coefficient of the ADF test of the cointegrating 
equation. After bootstrapping (with replacement) the correlation coefficient 5,000 
times at a 95% confidence interval, we obtain a lower/upper limits for the coefficients 
shown in Table 4 below. 
 

                                                 
14

 Our objective is to analyze the relation between the t-stat and the information ratio for all the pairs. 
Instead of calculating a point estimate of a correlation coefficient, we prefer to calculate the 
confidence intervals of a true correlation coefficient. We perform bootstrapping with replacement, the 
standard computer-intensive technique used in statistical inference to find confidence intervals of an 
estimated variable, see e.g. Efron, B. and Tibshirani, R. J. (1993) An Introduction to the Bootstrap, 
Chapman & Hall, New York.. It is a quantitative process in which we randomly repeat the selection of 
data (we repeat it for 5,000 times). Some samples might contain the same item more than once 
(hence the bootstrapping with replacement), whereas others may not be included at all. The process 
provides a new set of samples which is then used to calculate the unbiased confidence intervals for 
the true correlation coefficient. Bootstrapping in our case is a simple process of creating 5000 random 
samples from the original data set in such a way, that the corresponding pairs are selected 176 times 
from an original data set to form each of 5000 samples. 



17 

 

 
 

Table 4. 95% confidence intervals of the correlation coefficients between t-stats generated in the in-sample period 

and the out-of-sample information ratios 

The in-sample t-stat seems to have certain predictive power for the out-of-sample 
information ratio, although not for all the frequencies. The only frequencies for which 
the t-stat works are data sampled 5- and 10-intervals. For all the other frequencies 
the centre of the distribution is either very close to 0 (20-minute and daily data) or 
slightly negative (30-minute and 60-minute data). For instance, 95% confidence 
intervals for daily data are almost perfectly centred around 0 (-0.18 and 0.22), 
implying that the true correlation coefficient might be 0. 
 

ii. Relationship between t-stats for different high-frequencies and 
pairs 

In this paper we have various sampling frequencies defined as high frequency. 
Those are data sampled at 5-, 10-, 20-, 30- and 60-minute intervals. In this section 
we investigate whether there is a certain structure in their t-stats which could help us 
reduce the dimensionality of higher frequencies. This would enable us to pick only 
one higher frequency representative of all the intervals for further analysis.  
 
To do that we apply principal component analysis (PCA) to all the high-frequency 
pairs, see Jollife (1986) for the most comprehensive reference of PCA. PCA is a 
statistical technique which tries to find linear combinations of the original assets 
accounting for the highest possible variance of the total variance of the data set. If 
there is a strong common behaviour of the assets, in our case the t-stats across 
different pairs and frequencies, just a few first principal components should suffice to 
explain the behaviour of the entire data set. 
 
As the first step to obtain the data suitable as an input to PCA we form the matrix of 
t-stats from the ADF test. Each row of the matrix contains t-stats for different pairs 
(we have 176 rows, the same amount as the number of pairs) and each column 
contains t-stats for these pairs sampled at different frequencies (thus we have 5 
columns, one for 5-, 10-, 20-, 30- and 60-minute interval). The matrix is normalized 
across the columns by subtracting the mean and dividing by the standard deviation 
of each column. In this way, we obtain a matrix with mean 0 and unit variance in 
each column. 
 
The covariance of such a normalized matrix serves as an input for a principal 
components analysis. The first principal component explains over 97.9% of the 
variation in the data, confirming that there is a clear structure in the dataset. This 
means that trading pairs have similar t-stats across all the frequencies (in other 
words columns of the original matrix are similar). 
 
This finding is further reinforced by comparing variances between t-stats. From the 
original matrix of t-stats, we calculate variances for each frequency. We obtain 5 
variances between the pairs (1 for each high frequency), which all vary around 0.58, 
quite a high variance for t-stats when considering that t-stats range from 0.18 to 
2.83. Then we compute the variance of the t-stats for each of the 176 pairs across 

in-sample t-stats vs. oos information ratio 5-minute 10-minute 20-minute 30-minute 60-minute Daily

LOWER 0.04 -0.05 -0.18 -0.22 -0.26 -0.18

UPPER 0.32 0.23 0.13 0.10 0.09 0.22



18 

 

the 5 frequencies. These are much smaller in magnitude, the maximum variance 
being just around 0.14. Thus, the fact that variances between different frequencies 
are small when considering each of the 176 pairs, but variances between the pairs 
are high further demonstrates that t-stats tend to be similar across all the frequencies 
for any particular pair. 
 
As a conclusion we summarize that once a pair has been found to be cointegrated 
(in any time interval higher than the daily data) it tends to be cointegrated across all 
the frequencies. Hence we only need to look at one frequency. 
 

iii. Does cointegration in daily data imply higher frequency 
cointegration? 

We just demonstrated that there is a clear structure in the high-frequency dataset of 
the t-stats. The conclusion was that it is sufficient to consider only one higher 
frequency (here we decide for 5-minute data) as a representative for all the high-
frequencies. In this section we investigate the relationship between the t-stats for 
daily data (computed from 1st January 2009 to 9th September 2009 for daily data) 
and the t-stats for 5-minute data (computed from the out-of-sample period for 5-
minute data, i.e. 10th September 2009 to 17th November 2009). 
 
We perform bootstrapping (with replacement) to obtain confidence intervals of the 
true correlation coefficient. The dataset is bootstrapped 5,000 times and a 95% 
confidence intervals are -0.03/0.33. 
 
The boundaries of the confidence intervals imply that there is a possible relation 
between the variables. The true correlation coefficient is probably somewhere 
around 0.15 (in the centre of the confidence intervals mentioned above). Thus, 
cointegration found in daily data implies that the spread should be stationary for 
trading purposes in the high-frequency domain.  
 

iv. Does in-sample information ratio and the half-life of the mean 
reversion indicate what the out-of-sample information ratio will 
be? 

We showed above that there is a relationship between the profitability of the strategy 
and the stationarity of the spread computed from the t-stat of the ADF test. Here we 
try to find additional in-sample indicators (by looking at the in-sample information 
ratio and the half-life of mean reversion) of the out-of-sample profitability (measured 
by the information ratio) of the pair. 
 
We follow the same bootstrapping procedure we already performed in the previous 
sections to estimate the confidence intervals. That is, bootstrapping is performed 
5,000 times (with replacement) as in other cases. 
 
In Table 5 below we show the bootstrapped correlation coefficients among the in- 
and out-of-sample information ratios (not taking into account transaction costs) 
across all frequencies. 
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Table 5. 95% confidence intervals of the correlation coefficients between information ratios generated in the in- and 

out-of-sample periods 

The confidence bounds indicate that the in-sample information ratio can predict the 
out-of-sample information ratio to a certain extent. Whereas in Table 4 the t-stat only 
worked for 5- and 10-minute data, the information ratio works for data sampled 5-, 
10-, 20-minute and daily intervals. On the other hand, the in-sample information ratio 
does not work well for 30- and 60-minute data. We assume that the relationship 
should be positive whereas for 30- and 60-minute data the centre between the 
confidence bounds is negative and close to 0, respectively. Overall, the average 
lower/upper interval across all the frequencies presented is -0.06/0.26. 
 
Next we perform a bootstrapping of the pairs consisting of the in-sample half-life of 
mean reversion and the out-of-sample information ratio.  
 
We show the 95% confidence interval bounds of the true correlation coefficient in 
Table 6 below. As we would expect, the lower the half-life is, the higher the 
information ratio of the pair. The extent of the dependence is slightly lower than the 
one presented in Table 5. The average lower/upper interval across all the 
frequencies presented is -0.20/0.06. So we find that there is negative relation 
between the half-life of mean reversion and subsequent out-of-sample information 
ratio. 
 

 
 
 

Table 6. 95% confidence intervals of the correlation coefficients between the in-sample half-life of mean reversion 

and the out-of-sample information ratios 

Thus the 2 indicators presented here seem to have certain predictive power as to the 
out-of-sample information ratio of the trading pair. 
 

7. A DIVERSIFIED PAIR TRADING STRATEGY 

Standalone results of trading the pairs individually are quite attractive as shown 
in Table 3 but here we try to improve them using the findings from the previous 
section. We use the indicators mentioned just above to select the 5 best pairs for 
trading and present the results in what follows. 
 
First, we present the results of using each indicator individually. Results of selecting 
5 pairs based on the best in-sample information ratios are shown in Table 7 below. 
 

in-sample vs. oos information ratio 5-minute 10-minute 20-minute 30-minute 60-minute Daily

LOWER -0.02 0.10 -0.09 -0.26 -0.16 0.07

UPPER 0.31 0.42 0.26 0.07 0.15 0.32

half-life vs. oos information ratio 5-minute 10-minute 20-minute 30-minute 60-minute Daily

LOWER -0.18 -0.25 -0.24 -0.19 -0.15 -0.19

UPPER 0.08 -0.01 0.00 0.08 0.13 0.08
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Table 7. The out-of-sample information ratios for 5 selected pairs based on the best in-sample information ratios 
 
Information ratios improve for pairs sampled at the high-frequency and daily 
intervals. The improvement is the most noticeable for pairs sampled at the high-
frequency intervals, when the average information ratio net of trading costs for the 
high-frequency data improves from 0.72 as in Table 3 to 3.24. The information ratio 
for daily data improves as well (from 0.7 to 1.32). Almost all the information ratios for 
the pairs sampled at the high-frequency intervals are above 2, a truly attractive result 
for the strategy. 
 
Maximum drawdown and maximum drawdown duration favour the pairs sampled at 
the high-frequency intervals as well. The average maximum drawdown for the pairs 
sampled at the high-frequency intervals is 1.58%, much less than the drawdown for 
the pairs sampled at a daily interval (4.26%). The maximum drawdown duration is 22 
days on average for the high-frequency data, and 55 days for the daily data. 
 
In Table 8 below we show trading results based on the half-life of the mean reversion 
as an indicator. Thus, 5 pairs with the lowest half-life of the mean reversion were 
selected to form the portfolio. 
 

 
 

 Table 8. The out-of-sample trading statistics for 5 pairs selected based on the best in-sample half-life of mean 

reversion 
 
The information ratios net of trading costs are not attractive, with 0.50 being the 
highest and -3.32 being the lowest. The average information ratio for the pairs 
sampled at the high-frequency interval is -0.75, which means that the average pair is 
not profitable. The information ratio of the pairs sampled at a daily interval is 0.5, 
which is profitable, but worse than the basic case shown in Table 3. Thus we decide 
not to take the half-life of mean reversion into consideration as a prospective 
indicator of the future profitability of the pair. 
 
In Table 9 below we show the results of using the in-sample t-stats of the ADF test of 
the cointegrating regression as the indicator of the out-of-sample information ratios. 
 

AVERAGE VALUES 5-minute 10-minute 20-minute 30-minute 60-minute Average HF Daily

Information ratio IN-SAMPLE (incl. TC) 5.65 6.21 6.57 6.81 6.77 6.40 0.90

Information ratio (ex TC) 3.22 9.31 3.44 3.92 1.27 4.23 1.39

Information ratio (incl. TC) 2.27 7.71 2.58 2.88 0.75 3.24 1.32

Return (incl. TC) 21.14% 33.63% 15.16% 13.63% 5.27% 17.77% 18.50%

Volatility (ex TC) 9.30% 4.36% 5.88% 4.73% 7.02% 6.26% 14.03%

Maximum drawdown (ex TC) 3.02% 0.78% 1.19% 1.49% 1.42% 1.58% 4.26%

Maximum drawdown duration (ex TC) 7                  17                18                33                34                22                55

AVERAGE VALUES 5-minute 10-minute 20-minute 30-minute 60-minute Average HF Daily

Information ratio IN-SAMPLE (incl. TC) 0.58 1.33 4.35 4.42 5.51 3.24 0.46

Information ratio (ex TC) 1.59 6.42 4.35 1.34 0.59 2.86 0.57

Information ratio (incl. TC) -3.32 0.34 0.10 -0.85 -0.04 -0.75 0.50

Return (incl. TC) -18.27% 1.25% 0.26% -2.40% -0.26% -3.88% 6.71%

Volatility (ex TC) 5.50% 3.63% 2.63% 2.83% 7.01% 4.32% 13.43%

Maximum drawdown (ex TC) 0.81% 0.92% 0.93% 1.36% 1.84% 1.17% 3.07%

Maximum drawdown duration (ex TC) 3                  7                  16                29                34                18                57
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Table 9. The out-of-sample trading statistics for 5 pairs selected based on the best in-sample t-stats of the ADF test 

Focusing on the information ratios after transaction costs, they are worse than when 
the in-sample information ratio was used as an indicator. The out-of-sample 
information ratio after deduction of transaction costs is higher using the t-stats than 
using the in-sample information ratio only for a 5-minute data. For all the other 
frequencies, the in-sample information ratio is a better indicator. 
 
In Table 10 below we present the results of using the t-stat of the ADF test for daily 
data (from 1st January 2009 to 9th September 2009) as an indicator of the out-of-
sample information ratio of the pairs sampled at the high-frequency intervals. 
Average information ratio for all the high-frequency trading pairs is around 3, which 
makes it the second best indicator after the in-sample information ratio. 
 

 
 

Table 10. The out-of-sample trading statistics for selected 5 pairs based on the best in-sample t-stats of the ADF test 

for daily data 
 

We also include an equally weighted combination of the indicators. We use the 
formula below: 
 

 1 2_
2

R R
Combined ranking


  (16) 

 

where 1R  and 2R  and are the rankings based on the in-sample information ratio and 

the in-sample t-stat of the series sampled at a daily interval. In other words, we 
assign a ranking from 1 to 176 to each pair of shares based on the 2 indicators 
mentioned just above. Then we calculate the average ranking for each trading pair 
and reorder them based on the new ranking values. Finally we form the portfolio of 
the first 5 trading pairs. 
 
The trading results of the combined ratio are presented in the Table 12 below. 
 

AVERAGE VALUES 5-minute 10-minute 20-minute 30-minute 60-minute Average HF Daily

Information ratio IN-SAMPLE (incl. TC) 2.16 2.37 3.32 3.39 3.71 2.99 0.38

Information ratio (ex TC) 12.05 6.13 1.47 -0.22 1.28 4.14 -0.05

Information ratio (incl. TC) 5.60 2.47 -1.18 -0.90 0.15 1.23 -0.08

Return (incl. TC) 13.53% 6.49% -3.38% -6.49% 0.69% 2.17% -1.50%

Volatility (ex TC) 2.42% 2.62% 2.88% 7.23% 4.56% 3.94% 18.82%

Maximum drawdown (ex TC) 0.52% 0.57% 1.21% 1.19% 1.23% 0.94% 3.64%

Maximum drawdown duration (ex TC) 3                  7                  18                35                39                20                74

AVERAGE VALUES 5-minute 10-minute 20-minute 30-minute 60-minute Average HF

Information ratio IN-SAMPLE (incl. TC) 1.08 1.25 0.75 1.18 1.34 1.12

Information ratio (ex TC) 6.86 8.95 4.62 3.73 2.40 5.31

Information ratio (incl. TC) 2.12 5.40 3.12 2.64 1.75 3.01

Return (incl. TC) 7.65% 18.96% 15.89% 16.28% 12.55% 14.27%

Volatility (ex TC) 3.61% 3.51% 5.09% 6.16% 7.15% 5.11%

Maximum drawdown (ex TC) 0.79% 0.66% 0.92% 1.03% 1.43% 0.97%

Maximum drawdown duration (ex TC) 4                  5                  5                  10                13                7                  
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Table 11. The out-of-sample trading statistics for 5 best pairs selected based on combined ratio calculated according 

to Equation (16) 

 
The average information ratio for the pairs sampled at the high-frequency intervals is 
3.24. Unfortunately, the pair trading strategy using daily data only achieves 
information ratio of 0.35 after transaction costs, which is even worse than the 
original, unoptimized case. 
 
We also combine the t-stat of the ADF test for a given high-frequency and the 
information and obtain attractive results. Although the average information ratio net 
of trading costs for the trading pairs sampled at the high-frequency intervals is higher 
than was the case in Table 3 (thus when no indicator was used), the information 
ratios for the 20- and 60-minute sampling frequencies are negative and thus results 
are not consistent across all the high-frequency intervals. This in our opinion 
disqualifies the usage of this indicator for predicting the future profitability of the 
pairs. 
 

 
 

 

Table 12. The out-of-sample trading statistics for 5 best pairs selected based on the combined ratio of the in-sample t-

stat of the ADF test and the in-sample information ratio 
 

To summarize, on the one hand we were able to improve the information ratios net 
of trading costs for daily data from around 0.7 as in Table 3 to 1.3 as in Table 7 using 
the in-sample information ratio as an indicator of the future profitability of the pairs. 
 
On the other hand, 3 different indicators heavily improved the attractiveness of the 
results for the pairs sampled at the high-frequency intervals. We were able to 
increase the out-of-sample information ratio from 0.72 as in Table 3 (the average 
out-of-sample information ratio for all the 176 pairs sampled at the high-frequency 
intervals) to around 3, using the in-sample information ratio, the t-stat of the ADF test 
of the series sampled at a daily interval and a combination of the two (see Table 7, 
Table 10 and Table 11).  
 
Below we compare the results of the pair trading strategy at both frequencies (an 
average of all the high-frequency intervals and a daily one) with the appropriate 
benchmarks. In practice, one would choose only one high-frequency interval to 
trade, but here we look at an average, which represents all the frequencies for 
reasons of presentation. In fact, pairs sampled at all the high-frequency intervals are 

AVERAGE VALUES 5-minute 10-minute 20-minute 30-minute 60-minute Average HF Daily

Information ratio IN-SAMPLE (incl. TC) 1.12 -0.81 -0.25 -0.04 0.99 0.20 0.20

Information ratio (ex TC) 0.73 3.43 4.11 6.61 8.01 4.58 0.43

Information ratio (incl. TC) -0.52 1.75 2.92 5.25 6.78 3.24 0.35

Return (incl. TC) -6.03% 9.42% 18.01% 26.92% 35.11% 16.69% 5.00%

Volatility (ex TC) 11.67% 5.40% 6.17% 5.13% 5.18% 6.71% 14.15%

Maximum drawdown (ex TC) 3.58% 1.11% 1.00% 1.05% 1.53% 1.65% 5.21%

Maximum drawdown duration (ex TC) 1,783          855             257             157             54                21                169

AVERAGE VALUES 5-minute 10-minute 20-minute 30-minute 60-minute Average HF Daily

Information ratio IN-SAMPLE (incl. TC) 0.96 2.21 1.25 4.87 4.08 2.67 0.51

Information ratio (ex TC) 3.02 15.80 -0.05 2.03 -0.12 4.14 0.46

Information ratio (incl. TC) 1.30 7.60 -0.58 0.92 -0.52 1.74 0.43

Return (incl. TC) 7.61% 7.92% -3.91% 4.33% -4.49% 2.29% 6.81%

Volatility (ex TC) 5.87% 1.04% 6.78% 4.68% 8.63% 5.40% 15.96%

Maximum drawdown (ex TC) 0.71% 0.92% 1.81% 1.74% 1.85% 1.41% 5.65%

Maximum drawdown duration (ex TC) 4                  8                  19                38                61                26                40
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attractive for trading purposes when the in-sample information ratio is used as the 
indicator of the future profitability. Due to homogeneity we also use the in-sample 
information ratio as the indicator for the pairs sampled at daily interval. 
 
In Table 13 below we present a comparison of our pair trading strategy sampled at a 
daily interval with the results of buy and hold strategy of the the Eurostoxx 50 index 
and Market Neutral Index (HFRXEMN Index in Bloomberg). The results span from 
1st January 2009 to 17th November 2009, the out-of-sample period for our pairs 
sampled at a daily interval.  
 

 
 

 

Table 13. Annualized trading statistics compared in the out-of-sample period for the pair trading strategy sampled at 

daily interval, with the in-sample information ratio used as the indicator of the future profitability of the strategy 

The strategy outperforms its primary benchmark, the Market neutral index both on 
the absolute and risk-adjusted basis. While the market neutral index lost money 
during the period, our strategy was profitable without showing excessive volatility 
relative to the return. It also outperformed the corresponding market index, the 
Eurostoxx 50 index. 
 
In Table 14 below we compare the results of the average high-frequency pair trading 
strategy with the appropriate benchmarks in the period from 10th September 2009 to 
17th November 2009. The information ratio of 3.24 of the pair trading strategy is 
considerably higher than any of the two indices. Thus, using high-frequency 
sampling frequency seems to offer significant improvement of the investment 
characteristics of the pair trading strategy. It offers a comparable absolute return to 
the one achieved by the Eurostoxx 50 index, with significantly lower volatility. 
 

 
 

Table 14. Annualized trading statistics compared in the out-of-sample period for pair trading strategy sampled at the 

high-frequency interval, with the in-sample information ratio used as the indicator of the future profitability of the 

strategy 

 

8. CONCLUDING REMARKS 

In this article we apply a pair trading strategy to the constituent shares of the 
Eurostoxx 50 index. We implement a basic long-short trading strategy which is used 
to trade shares sampled at 6 different frequencies, namely data sampled at 5-
minute, 10-minute, 20-minute, 30-minute, 60-minute and daily intervals. 
 

AVERAGE VALUES Market neutral index Eurostoxx 50 Daily Strategy

Information Ratio (incl. TC) -1.04 0.54 1.32

Return (incl. TC) -4.56% 15.34% 18.50%

Volatility (incl. TC) 4.36% 28.62% 14.03%

Maximum drawdown (ex TC) 6.20% 33.34% 4.26%

Maximum drawdown duration (ex TC) 188 44 55                                       

AVERAGE VALUES Market neutral index Eurostoxx 50 HF Strategy

Information Ratio (incl. TC) 0.90 0.78 3.24

Return (incl. TC) 3.55% 16.40% 17.77%

Volatility (incl. TC) 3.96% 21.10% 6.26%

Maximum drawdown (ex TC) 1.64% 8.31% 1.58%

Maximum drawdown duration (ex TC) 19 11 22                                       
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First, we divide shares into industry groups and form pairs of shares that belong to 
the same industry. The Kalman filter approach is used to calculate an adaptive beta 
for each pair. 
 
Subsequently, we calculate the spread between the shares and simulate trading 
activity based on 2 simple trading rules. We enter the position (long or short) 
whenever the spread is more than 2 standard deviations away from its long-term 
mean. All positions are liquidated when the spread returns to its long-term mean 
(defined as its distance being lower than 0.5 standard deviations from the long-term 
mean), that is, technically, when it reverts towards the long-term mean.  
 
As such, standalone pair trading results are not very attractive. That is why we 
introduce a novel approach to select the best pairs for trading based on the in-
sample information ratio of the series, the in-sample t-stat of the ADF test of the 
series sampled at a daily interval and a combination of the two, as these are shown 
to be good indicators of the out-of-sample profitability of the pair.  
 
We then build a diversified pair trading portfolio based on the 5 trading pairs with the 
best in-sample indicator value. Our diversified approach is able to produce 
information ratios of over 3 for a high frequency sampling interval (an average across 
all the high-frequency intervals considered), and 1.3 for a daily sampling frequency 
using the in-sample information ratio as an indicator. This is a very attractive result 
when compared to the performance of the Eurostoxx 50 index and the index of 
Market Neutral Hedge Funds with information ratios lower than 1 during the review 
period. It also shows how useful the combination of the high-frequency data and the 
concept of cointegration can be for quantitative fund management. 
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APPENDICES 
 

a. Kalman filter estimation procedure 

The full specification of the model: 
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The parameters that need to be set in advance are H and Q, which could be defined as the 

error terms of the process. Their values in isolation are not important. The most important 

parameter of the Kalman filter procedure is the noise ratio, which is defined as

Q
noiseRatio

H
 . The higher the ratio, the more adaptive beta, the lower the ratio, the less 

adaptive beta. Thus, if we used extremely low value of noise ratio, e.g. 10
-10

, the beta would 

be fixed along the dataset. Also, it is important to correctly initialize the value of beta, as in 

the second equation, 1t t t tv Y X    , there is no way of knowing what t  will be at the first 

step. Thus, we have set 1  to be 1
1

1

Y

X
  , thus the initial error term being 0. 

 
 

b. Distribution of information ratios for a 5-minute sampling frequency. Kalman 
filter was used for the beta calculation 
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c. Distribution of information ratios for a 10-minute sampling frequency. 
Kalman filter was used for the beta calculation 

 
 
 
 
 
 

d. Distribution of information ratios for a 30-minute sampling frequency. 
Kalman filter was used for the beta calculation 
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e. Distribution of information ratios for a 60-minute sampling frequency. 

Kalman filter was used for the beta calculation 
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f. Constituent stocks of Eurostoxx 50 index which we used to form the pairs 

Number Company name Bloomberg Ticker Industrial sector

1 Air Liquide SA AI       FP  Equity Basic Materials

2 ArcelorMittal MT       NA  Equity Basic Materials

3 BASF SE BAS      GY  Equity Basic Materials

4 Bayer AG BAYN     GY  Equity Basic Materials

5 Deutsche Telekom AG DTE      GY  Equity Communications

6 France Telecom SA FTE      FP  Equity Communications

7 Nokia OYJ NOK1V    FH  Equity Communications

8 Telecom Italia SpA TIT      IM  Equity Communications

9 Telefonica SA TEF      SQ  Equity Communications

10 Vivendi SA VIV      FP  Equity Communications

11 Daimler AG DAI      GY  Equity Consumer, Cyclical

12 Volkswagen AG VOW      GY  Equity Consumer, Cyclical

13 Anheuser-Busch InBev NV ABI      BB  Equity Consumer, Non-cyclical

14 Carrefour SA CA       FP  Equity Consumer, Non-cyclical

15 Groupe Danone SA BN       FP  Equity Consumer, Non-cyclical

16 L'Oreal SA OR       FP  Equity Consumer, Non-cyclical

17 Sanofi-Aventis SA SAN      FP  Equity Consumer, Non-cyclical

18 Unilever NV UNA      NA  Equity Consumer, Non-cyclical

19 LVMH Moet Hennessy Louis Vuitton SA MC       FP  Equity Diversified

20 ENI SpA ENI      IM  Equity Energy

21 Repsol YPF SA REP      SQ  Equity Energy

22 Total SA FP       FP  Equity Energy

23 Aegon NV AGN      NA  Equity Financial

24 Allianz SE ALV      GY  Equity Financial

25 AXA SA CS       FP  Equity Financial

26 Banco Santander SA SAN      SQ  Equity Financial

27 Banco Bilbao Vizcaya Argentaria SA BBVA     SQ  Equity Financial

28 BNP Paribas BNP      FP  Equity Financial

29 Credit Agricole SA ACA      FP  Equity Financial

30 Deutsche Bank AG DBK      GY  Equity Financial

31 Deutsche Boerse AG DB1      GY  Equity Financial

32 Assicurazioni Generali SpA G        IM  Equity Financial

33 ING Groep NV INGA     NA  Equity Financial

34 Intesa Sanpaolo SpA ISP      IM  Equity Financial

35 Muenchener Rueckversicherungs AG MUV2     GY  Equity Financial

36 Societe Generale GLE      FP  Equity Financial

37 UniCredit SpA UCG      IM  Equity Financial

38 Alstom SA ALO      FP  Equity Industrial

39 CRH PLC CRH      ID  Equity Industrial

40 Koninklijke Philips Electronics NV PHIA     NA  Equity Industrial

41 Cie de Saint-Gobain SGO      FP  Equity Industrial

42 Schneider Electric SA SU       FP  Equity Industrial

43 Siemens AG SIE      GY  Equity Industrial

44 Vinci SA DG       FP  Equity Industrial

45 SAP AG SAP      GY  Equity Technology

46 E.ON AG EOAN     GY  Equity Utilities

47 Enel SpA ENEL     IM  Equity Utilities

48 GDF Suez GSZ      FP  Equity Utilities

49 Iberdrola SA IBE      SQ  Equity Utilities

50 RWE AG RWE      GY  Equity Utilities  
 

 



29 

 

g. Calculation of the trading statistics 
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