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ABSTRACT
The art of systematic financial trading evolved with an array of
approaches, ranging from simple strategies to complex algorithms,
all relying primarily on aspects of time-series analysis (e.g., Mur-
phy, 1999; De Prado, 2018; Tsay, 2005). After visiting the trading
floor of a leading financial institution, we noticed that traders al-
ways execute their trade orders while observing images of financial
time-series on their screens. In this work, we build upon image
recognition’s success (e.g., Krizhevsky et al., 2012; Szegedy et al.,
2015; Zeiler and Fergus, 2014; Wang et al., 2017; Koch et al., 2015;
LeCun et al., 2015) and examine the value of transforming the tradi-
tional time-series analysis to that of image classification. We create
a large sample of financial time-series images encoded as candle-
stick (Box and Whisker) charts and label the samples following
three algebraically-defined binary trade strategies (Murphy, 1999).
Using the images, we train over a dozen machine-learning clas-
sification models and find that the algorithms efficiently recover
the complicated, multiscale label-generating rules when the data is
visually represented. We suggest that the transformation of contin-
uous numeric time-series classification problem to a vision problem
is useful for recovering signals typical of technical analysis.
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1 INTRODUCTION
Traders in the financial markets execute buy and sell orders of finan-
cial instruments as stocks, mutual funds, bonds, and options daily.
They execute orders while reading news reports and earning calls.
Concurrently, they observe charts of time-series data that indicates
the historical value of securities and leading financial indices (see
Fig. 1 for a typical workstation of a professional trader1). Many

1The photo was taken in a trading room at Rouen, Normandie, France, September
2015.
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algorithms have been developed to analyze continuous financial
time-series data to improve a trader’s decision-making ability to
buy or sell a particular security (Murphy, 1999). Conventional algo-
rithms process time-series data as a list of numerical data, aiming at
detecting patterns as trends, cycles, correlations, etc. (e.g., De Prado,
2018; Tsay, 2005). If a pattern is identified, the analyst can then con-
struct an algorithm that will use the detected pattern (e.g., Wilks,
2011) to predict the expected future values of the sequence at hand
(i.e., forecasting using exponential smoothing models, etc.).

Experienced traders, who observe financial time-series charts
and execute buy and sell orders, start developing an intuition
for market opportunities. The intuition they develop based on
their chart observations nearly reflects the recommendations that
their state-of-the-art model provides (personal communication with
J.P. Morgan’s financial experts Jason Hunter, Joshua Younger, Alix
Floman, and Veronica Bustamante). In this perspective, financial
time-series analysis can be thought of as a visual process. That is,
when experienced traders look at a time-series data, they process
and act upon the image instead of mentally exercising algebraic
operations on the sequence of numbers.

Figure 1: Typical workstation of a professional trader.
Credit: Photoagriculture / Shutterstock.com.

This paper is written under the assumption that, given public
knowledge, markets are efficient (e.g., Pedersen, 2019). That is,
future market movements have almost no predictability. However,
the way professionals trade is systematic (e.g., consistent, back-
tested, and potentially profitable for a short duration) and can be
characterized using a set of rules. We ask, can we build a system
that identifies and replicates the way humans trade? For this, we
create extensive financial time-series image data. We make use of
three known label-generating rules following algebraically-defined
binary trade strategies (Murphy, 1999) to replicate the way people
trade. Using a supervised classification approach (e.g., Bishop, 2006;
Goodfellow et al., 2016; Aggarwal, 2015), we evaluate predictions
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using over 15 different classifiers and show that the models are
very efficient in identifying the complicated, sometimes multiscale,
labels.

2 RELATEDWORK AND MAIN
CONTRIBUTIONS

The focus of this work is on the representation of financial time-
series data as images. Previous work on time-series classification
suggests first transforming the data either locally using wavelets or
globally using Fourier transforms and then compare the modes of
variability in the transformed spaces (e.g., Wilks, 2011). Other meth-
ods apply similarity metrics such as Euclidean distance, k-nearest
neighbors, dynamic time warping, or even Pearson correlations
to separate the classes (e.g., Aggarwal, 2015). In addition to the
above, other techniques focus on manual feature engineering to
detect a frequently occurring pattern or shape in the time series
(e.g., Bagnall et al., 2017).

More recently, it was suggested to approach time-series classi-
fication by first encoding the data as images and then utilize the
power of computer vision algorithms for classification (Park et al.,
2019). In an example, it was suggested to encode the time depen-
dency, implicitly, as Gramian-Angular fields, Markov-Transition
fields (Wang and Oates, 2015a; Wang and Oates, 2015b), or make
use of recurrence plots (Souza et al., 2014; Silva et al., 2013; Hatami
et al., 2018) as a graphical representation. Another work focused
on transforming financial data into images to classify candlesticks
patterns (Tsai et al., 2019).

In this paper, we examine the value of images alone for identify-
ing trade opportunities typical for technical analysis. To the best
of our knowledge, our work is the first that built upon the great
success in image recognition and tries to systematically apply it
to numeric time-series classification by taking a direct graphical
approach and recency-biased label-generating rules. The contribu-
tions of this paper are as follows:

(1) The first contribution is bridging the unrelated areas of quan-
titative finance and computer vision. The former involves
a mixture of technical, quantitative analysis, and financial
knowledge, while the second involves advanced algorithm
design and computer science techniques. In this paper, we
show how the two distinct areas can leverage expertise and
methods from each other.

(2) The second contribution is our understanding that, in prac-
tice, there are financial domains in which investment deci-
sions are made using visual representations alone (e.g., swap
trade) – relying, in fact, on traders’ intuition, experience,
skill, and luck. Moreover, currently, numerous online plat-
forms and smartphone applications (e.g., Robinhood) allow
people to trade directly from their smartphones. In these plat-
forms, the data is presented graphically, and in most cases,
the user decides and executes his trade upon the visual rep-
resentation alone. Therefore, it’s reasonable to examine the
usefulness of visual representations as input to the model.

(3) The third contribution is that we show that the concept of
visual time-series classification is effective and works on real
data. A large fraction of the artificial-intelligence research
is conceptual and works only on synthetic data. As will be

shown, the concepts introduced in this paper are not only
effective on real data, but they can be leveraged to deploy
immediately as either a marketing recommendation tool
and/or as a forecasting tool.

3 DATA AND METHODS
In this study, we use Yahoo finance to analyze the daily values of
all companies that contribute to the S&P 500 index for the period
2010-2018 (hereafter SP500 data). These are large-cap companies
that are actively traded on the American stock exchanges, and
their capitalization covers the vast majority of the American equity
market (e.g., Berk et al., 2013).

Figure 2: Converting continuous time series to images.

Trading is done continuously (during trade hours which usually
span between 9:30 am to 4:00 pm, not including before- and after-
market hours). However, we use a discrete form of the continuous
data by accounting only for the start, max, min, and end values per
stock per day. These values are denoted, as is common in finance,
as the Open, High, Low, and Close (OHLC) values (e.g., Murphy,
1999). We visualize the data using a box-and-whisker (also called
candlestick) diagram, where box edges mark the Open and Close
price, while the whiskers mark the Low and High values (i.e., daily
min and max). The color of each box reveals whether the Open price
finalized higher or lower than the Close price for the same day; if
Open > Close the box in filled in black indicating Bear’s market,
whereas if Open < Close the box is filled in white indicating Bull’s
market (e.g., Murphy, 1999). Figure 2 shows an example of this
process by focusing attention on the AAPL ticker for Feb 19, 2019,
and Feb 28, 2019. The left columns show the 1-minute continuous
trading data during trading hours, while the right column detail the
discretization process. Notice that the upper left time-series experi-
ences a positive trend resulting in a white candlestick visualization,
while the bottom left time-series data experiences a negative trend
resulting in a black candlestick.

We compare three well-known binary indicators (Murphy, 1999),
where each indicator is based on prescribed algebraic rules that
depend solely on the Close values. Each indicator alerts the trader
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only for a buying opportunity. If a trader decides to follow (one
of) the signals they may do so at any point no earlier than the day
after the opportunity signal was created. The three "buy" signals
are defined as follows:

• BB crossing: The Bollinger Bands (BB) of a given time-series
consists of two symmetric bands of 20-days moving two
standard deviations (Colby and Meyers, 1988). The bands
envelop the inherent stock volatility while filtering the noise
in the price action. Traders use the price bands as bounds for
trade activity around the price trend (Murphy, 1999). Hence,
when prices approach the lower band or go below, prices
are considered to be in an oversold position and trigger a
buying opportunity. Here, the bands are computed using the
(adjusted) Close values, and hence a buy signal is defined to
trigger when the daily Close value crosses above the lower
band.
Figure 3 shows an example of a Buy signal opportunities for
the AAPL stock during 2018. In solid black, one can see the
daily Close values for the ticker while the red line shows
the 20-days moving average (inclusive) of the price line.
The dashed black lines mark the two standard deviations
above and below the moving average line. The BB crossing
algorithm states that a Buy signal is initiated when the price
line (in solid black) crosses above the lower dash black line.
In this Figure, marked by the red triangles, one can identify
eight such buy opportunities.

Figure 3: Labeling time series data according to the Bollinger
Bands crossing rule.

• MACD crossing: Moving Average Convergence Divergence
(MACD) is a trend-following momentum indicator that com-
pares the relationship between short and long exponential
moving averages (EMA) of an asset (Colby andMeyers, 1988).
As is common in finance (e.g., Murphy, 1999), we compute
the MACD by subtracting the 26-days EMA from the 12-
days EMA. When MACD falls to negative values, it suggests
negative momentum and conversely, when the MACD rises
to positive values, it indicates upward momentum. Traders
usually wait for consistent measures, thus smoothing the
MACD line further by computing the 9-day EMA of the
MACD, known as the signal line. Here, the MACD buy sig-
nal is defined to trigger when the signal line crosses above.

• RSI crossing: The Relative Strength Index (RSI) is an oscillat-
ing indicator that summarizes the magnitude of recent price
changes to evaluate the overbought or oversold conditions
of an asset. As is common in finance (e.g., Colby and Meyers,
1988; Murphy, 1999), we compute RSI as the ratio 14-days
EMA of the incremental increase to the incremental decrease
in asset values. The ratio is then scaled to values that vary
between 0 and 100: it rises as the number and size of daily
gains increases and falls as the number and size of daily
losses increases. Traders use RSI as an indication of either an
overbought or an oversold state. An overbought state might
trigger a sell order; an oversold state might trigger a buy
order. The standard thresholds for oversold/overbought RSI
are 30/70, respectively (Murphy, 1999). Here, the RSI buy
signal is defined to trigger when the RSI line crosses above
the value of RSI=30.

Figure 3 shows three positively-labeled images that correspond
to the BB-crossing algorithm. These images are generated by en-
veloping 20 days of stock activity (the red rectangles) before and
including the buy-signal day activity. It is also possible to create
negatively-labeled images from this time-series by enveloping ac-
tivity, in the same way, for days with no buy signal. Note also that
these images tightly bind the trade activity and do not contain labels,
tickers, or title, which is the essential input data standardization
pre-process we apply in this study.

4 RESULTS
The objective of this study is to examine whether or not we can
train a model to recover trade signals from algebraically-defined
time-series data that is typical of technical analysis. We examine
the supervised classification predictions of the time-series images
that are labeled according to the BB, RSI, and MACD algorithms.

The data set is balanced, containing 5,000 samples per class per
indicator. That is, for each of the S&P500 tickers, we compute all
buy triggers for the period between 2010 and the end of 2017. We
then choose, at random, 10 buy triggers for each ticker and create
corresponding images. In the same way, we choose, at random, 10
no-buy triggers per ticker and create similar images. This process
results in 10,000 high-resolution images per trigger.

A key difference between the three algorithms, besides their
varying complexity, is the time-span each considers. While the BB
algorithm takes into account 20 days of price action, RSI, which
uses exponential-moving averaging considers (effectively) 27 days.
MACD, which also uses exponential-moving averages, spans (effec-
tively) over 26 days. For each of the triggers, we crop the images
according to the number of effective trading days they consider.
Thus, the BB images include information of 20 trade days, while
RSI contains data for 27 days, and MACD, the most sophisticated
algorithm that compares three time scales, contains 26 days of data.
In other words, each sample has 80-108 features depending on the
size of the window required to compute the label (i.e., 4x20 for the
BB crossing, and 4x26, 4x27 for the MACD and RSI respectively).

Figure 4 depicts an example of the five different visual designs
we use in this study. Panel 4a uses the OHLC data as in Fig. 2, while
panel 4b uses only the Close values plotted as a line chart. The
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Figure 4: Various visual representations of the same time-
series data.

design of 4b serves as a reference performance level, as will be
discussed later.

In this study, a key element is how to express the direction and
notion of time, or recency, in static images. A simple way of in-
corporating recency in the images is via the labels. Each image
is labeled according to trade opportunities, which are defined by
crossing above a threshold at the right part of the image. The labels
are time-dependent and are tied to a specific region in the chart;
thus, implicitly, they deliver the notion of time to the static images.
Another way of incorporating recency in the images is to incor-
porate the notion of time directly in them. The designs at panels
4c and 4d aim at explicitly representing the direction of time by
either linearly varying the width of the boxes towards the right
(4c), or by overlaying the previous Close value as a horizontal line
on each of the candlesticks (4d). Lastly, in panel 4e, we augment the
OHLC data by incorporating the trade volume in the candlestick
visualization by varying the width of each box according to the
relative change of the trade volume within the considered time
frame. Remember that all three label-generating rules consider only
the Close value, but each Close value is influenced by its preceding
daily activity, reflected in the candlestick’s visualization. We expect
a trained model to either filter out unnecessary information or dis-
cover new feature relationships in the encoded image and identify
the label-generating rule.

Following the above process, we create high-resolution images
based on the discrete form of the data. Another question we have
to address is what resolution do we need to maintain for proper
analysis. The problem is that the higher the resolution, the more
we amplify the (pixelated) feature space introducing more noise
to the models and possibly creating unwanted spurious correla-
tions. We examine this point by varying the resolution of the input
images in logarithmic scale and comparing the accuracy score of
a hard voting classifier over the following 16 trained classifiers:
Logistic Regression, Gaussian Naive-Bayes, Linear Discriminant
Analysis, Quadratic Discriminant Analysis, Gaussian Process, K-
Nearest Neighbors, Linear SVM, RBF SVM, Deep Neural Net, Deci-
sion Trees, Random Forest, Extra Randomized Forest, Ada Boost,

Bagging, Gradient Boosting, and Convolutional Neural Net2. The
focus here is on comparing the models’ aggregated performance
while changing the representation of the input space.

Figure 5: The effect of varying the image resolution on the
classification accuracy and precision scores for the three
label-generating rules.

Figure 5 shows the results of the classification scores when we
downscale the resolutions of the images that are labeled following
the BB, RSI, and MACD algorithms. We use the Lanczos filter for
downscaling, which uses sinc filters and efficiently reduces aliasing
while preserving sharpness. To evaluate the models’ performances,
we use the 5-fold cross-validation technique. This allows us to infer
not only the mean prediction of the voting classifier but also the
variability about the mean. (The vertical black lines in Fig. 5 show
one symmetric standard deviation about the mean accuracy). Figure
5 shows that regardless of the labeling rule, the average accuracy
and precision scores increase with finer resolutions but matures
around 30x30 pixel resolution. For this reason, the following analy-
sis is done using a 30x30 pixel resolution.

Figure 6 compares the predictability skill in the various image
representations of the same input data for the three label-generating
rules. All input representations perform remarkably well, and the
predictability skill stands at about 95% for the BB and RSI label-
generating rules, while at approximately 80% for the MACD labeled
data. We were not surprised to see that the classifiers perform less
efficiently on theMACD labeled data as this labeling-rule is themost
complex involving multiple time-scales and smooth operations, all
acting in concert.

The best performing input data is the one that uses the Close
values exclusively as line plots, while the various OHLC represen-
tations fall only a little behind. However, the line plot serves only
as a point of reference – the Bayesian performance level. This is
because the label-generating rule depends exclusively on the Close
values3. The key point is the fact that the various visual OHLC
representations manage to achieve performance comparable to the
Bayesian level. Most importantly, this finding is robust for the BB
and RSI, as well as for the MACD algorithm.
2The Deep Neural Net uses 32x32x32 structure, while the Convolutional Neural Net
(CNN) uses three layers of 32 3x3 filters with ReLU activations and Max Pooling of
2x2 in between the layers. The last layer incorporates Sigmoid activation. The CCN
model is compiled with Adam optimizer, binary-cross entropy loss function and run
with a batch size of 16 samples for 50 iterations
3Using the Close value alone is comparable to using the actual numerical data that the
labeling rules are based upon.
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Figure 6: The supervised classification accuracy (left panel)
and precision (right panel) scores for the various triggers as
a function of the different input representations.

Close examination of Fig. 6 shows that augmenting the OHLC
input to include explicit time representation in the images by vary-
ing the bar widths linearly or by incorporating the previous Close
values didn’t add value. An exception to this is the MACD algo-
rithm (a point we may explore further in a future study). On the
other hand, encoding the irrelevant volume information in the
candlestick images increased our uncertainty in predictions for all
label-generating rules.

The precision score results are represented in the right panel of
Fig. 6 and are almost identical to the accuracy scores on the left
panel.

5 DISCUSSION
In this paper, we examine the supervised time-series classification
task using large financial data sets and compare the results when
the data is represented visually in various ways.We find that even at
low resolutions (see Fig. 5), time-series classification can be achieved
effectively by transforming the task into a computer vision task.
This finding is in accordance with Cohen et al., 2019 who showed
that classification of financial data using exclusive visual designs
relates information spatially, aids in identifying new patterns and,
in some cases, achieves better performance compared to using the
raw tabular form of the same data.

Visualizing data and time-series data in particular, is an essential
pre-processing step. Visualization by itself is not straightforward,
especially for high-dimensional data, and it might take some time
for the analyst to find the proper graphical design that will encap-
sulate the full complexity of the data. In this study, we essentially
suggest considering the display as the input over the raw infor-
mation. Our research indicates that even very complex multi-scale
algebraic operations can be discovered by transferring the task to a
computer vision problem.

A key question in this study is whether time-dependent signals
can be detected in static images. To be more explicit, if the time axis
goes left to right, it means that data points to the right are more
recent and therefore, more critical to the model than data points to
the left. But how can we convey this kind of information without an
independent ordinal variable (e.g., time axis)? We present two ways

to incorporate the time-dependency in the images: the first lever-
ages labels to deliver the notion of time; the second augments the
images with sequential features. Incorporating time-dependency
via labeling is done throughout the paper. We label the candlestick
images using three algorithms and each computes a time-dependent
function. Thus, each image encapsulates implicitly, via its corre-
sponding label, the notion of time. That is, the signal we seek to
detect is located on the right-most side of the image; the cross-
above trigger always occurs because of the last few data points. In
an example, the BB crossing algorithm effectively yields images
with suspected local minimum on the right-hand side of the image.
Incorporating time dependency explicitly by image augmentation
is considered in two ways, by varying the width of the boxed in the
candlestick diagram linearly and by overlaying the previous Close
value on each candlestick. It is noteworthy, however, that compared
to the implicit label approach, we find the explicit augmentation to
be less effective, as can be seen in Fig. 6.

In this study, we blended all S&P 500 stocks and did not cluster
the data by season, category, or sector. We used specific window
sizes that correspond to the total length of information required
by each algorithm to compute its label. To isolate the effect of the
various window sizes, we examined the classification results when
all window sizes were set to include 30 days of information. We
found that the performance decreased when the window size added
unnecessary information. (In this instance, there was a decrease in
accuracy scores by a few percentage points – not shown).

We see no need to account for the overall positive market per-
formance during the 2010-2018 period as the analysis is done on
a short times scales (about a month or less). One can complement
this study by similarly analyzing for sell signals. We have repeated
this analysis for sell signals and found that the overall quantitative
results are very similar (not shown).

Figure 7: Time-series forecasting using a 20-days rollingwin-
dow.

We end this paper by noting that the supervised classification
task can be applied as a forecasting tool (e.g., Hyndman and Athana-
sopoulos, 2018). In Fig. 7, we take out-of-sample, daily trading data
from 2018. (As noted, the previous training and evaluation were
computed using data from the period between 2010 and the end of
2017.) We create 20 days of images for every day in the data. Next
we feed these images to the voting classifier as a test set, and for
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each image, we predict what the label will be. Figure 7 corresponds
to Fig. 3 but also includes blue triangles showing the predicted buy
signal. Clearly, at least five buy signals were correctly classified,
but even the missed ones are incredibly close in the sense that there
is almost cross-above the lower BB. Finally, depending on the use
case, one can modify the binary probability threshold to achieve
higher precision scores.

6 CONCLUSION
Visual object recognition and object detection using machine learn-
ing and deep neural networks have shown great success in recent
years (e.g., Krizhevsky et al., 2012; Zeiler and Fergus, 2014; Szegedy
et al., 2015; Koch et al., 2015; LeCun et al., 2015; Wang et al., 2017).
In this paper, we follow up on these studies and examine the value
in transforming numerical time-series analysis to that of image clas-
sification. We focus on financial trading after noticing that human
traders always execute their trade orders while observing images of
financial time-series on their screens (see Fig. 1). Our study suggests
that the transformation of time-series analysis to a computer vision
task is beneficial for identifying trade decisions typical for humans
using technical analysis.
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