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Successful risk management requires real understanding of the nature of volatility and
correlations between financial markets, and the problems inherent in calculating
statistical estimates of these quantities. Whilst volatilities are based on the variances
of individual returns distributions, correlations depend on characteristics of the joint
distributions between two related markets. This extra dimension adds a great deal of
uncertainty to correlation risk measures. In fact, whilst it seems reasonable to assume
that individual return processes are stationary, so that volatilities do exist, it isby no
means always the case that two returns processes will be jointly stationary. So
unconditional correlations may not even exist.

Of courseit is always possible to calculate a number that supposedly represents
correlation, but often these numbers change considerably from day to day, a sign that
the two returns processes are not jointly stationary. It is unfortunate that some
standard correlation estimation methods induce an apparent stability that is purely an
artefact of the method, and the true nature of underlying correlations is obscured.

The first objective of this chapter isto review the different approaches to measuring
energy correlations, pointing out their advantages and limitations. Although
correlation has become the ubiquitous tool for measuring comovements in asset
returns, its limitations are substantial.

Firstly, data are detrended before the analysis and this precludes any possibility to
investigate long-term common trends in asset prices. Correlation based hedges may
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require frequent rebalancing because there is nothing in the computation of hedge
ratios to guarantee that the hedge istied to the underlying over the longer term.
Secondly correlation, being essentially a static measure, cannot reveal any dynamic
causal relationships. Indeed it is possible that hedges could be based on spurious
correlations, that appear high even though there is no underlying causal relationship,
particularly when some of the rather misleading correlation measures are employed.

The advanced management of correlation risks should take account of any lead-lag
relationships, for example the ‘price discovery’ between spot and futures, but
correlation is not an adequate tool for such analysis.

Applications of correlation to energy markets include computation of hedge ratios, the
pricing of multi-asset options, and the risks of trading spreads and commodity

baskets. These applications are discussed with reference to the crude oil and natural
gas markets. We use daily data on WTI crude oil spot and near futures prices from 1%
July 1988 to 26™ February 1999, and the NYMEX sweet crude prices from 1 to 12
months from 4™ February 1993 to 24™ March 1999. For the natural gas market we use
the NYMEX prompt month future with Gas Daily time series for natural gas from 10"
April 1992, and the Kansas City "Western" natural gas contract from 18" December
1995, to 3" March 1999.

The last part of this chapter introduces a method of measuring comovements between
markets that overcomes some of the limitations of correlation. Cointegration, a
methodology that has become standard practice in econometrics during the last
decade, is now showing itself to be a very useful tool for hedging financial assets.

Cointegration refers not to comovements in returns, but comovements in asset prices.

If spreads are mean-reverting, asset prices are tied together in the long-term by a
common stochastic trend. Hedges based on cointegration may deviate from the
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underlying in the short-term, but are tied to the underlying by along-run equilbrium

relationship and hence require less frequent rebalancing.

Cointegration is atwo step process: first any long-run equilibrium relationships
between prices are established, and then a dynamic correlation model of returnsis
estimated. This *error correction model’, so-called because short-term deviations from
equilibrium are corrected, reveals the dynamic causalities that must be present in a
cointegrated system. The chapter concludes with empirical testing of a cointegration
model for crude oil spot and futures.

Statistical Measures of Correation

Returns to financial assets, the relative price changes, are well approximated for short
holding periods by the difference in log prices. For ease of exposition we consider
daily returns R; = log P; — log P..; although correlation methods apply equally well to
different returns frequencies, provided data are synchronous.

It is reasonable to assume that returns are generated by a stationary stochastic process.
That is:

E(Ry), the unconditional mean, is a finite constant;

V(Ry), the unconditional variance, is afinite constant ;

COV(R:,R:s), the unconditional autocovariance, depends only on the lag s.

The mean-reversion property of stationary seriesis well known. A stationary process
IS mean-reverting, not in the sense of a mean-reverting term structure, but mean-
reverting over time. They can never drift too far from their mean because of the finite

variance.
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The speed of mean-reversion is determined by the autocovariance: mean-reversion is
quick when autocovariances are small, and slow when autocovariances are large. At
one end of the spectrum we have ‘white noise’, when returns are independent so
COV(Ry,R:9) is zero, and mean-reversion is instantaneous. At the other extreme
COV(R,R:¢) = V(R:) so autocorrelations are unity, there is no mean-reversion, and
returns are not stationary.

Two stationary returns processes R; and R, are jointly covariance stationary if
COV(Ry;, Rat.s) depends only on the lag s. In particular the contemporaneous
covariance COV (Ryy, Ryy) isaconstant, irrespective of the time at which it is

measured.

For jointly stationary returns we may define a contemporaneous cross correlation as

Corr(Rl,t, R2,t) = COV(R]_,t, R2,t)/ dV(Rl,t) V(Rz,t)) (1)

Or in dternative notation r = S12/S1S2. SO the extension of the constant volatility
assumption explained in chapter * (ref to chapter on volatility) to constant
unconditional cross correlations requires joint stationarity.

Thisis quite an heroic assumption, except in specia circumstances. So it should be
clear from the outset that the computation of unconditional correlations may be a
meaningless exercise. Neverthelessit is standard practice, so one focus of this chapter
isto point out the dangers of using such measures when they are not, in fact, valid.

If it exists the unconditional correlation is one number, r, that is the same throughout
the process. Correlations always lie between +1 and —1. High positive values indicate
that the returns move together in the same direction, and high negative values indicate
that they tend to move in opposite directions. Orthogonal or uncorrelated returns have
zero correlation.
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Any differences between estimates of r at different times arise from differencesin
samples. The smaller the sample the bigger these differences, because sampling errors
areinversely proportional to sample size. But when returns have a high degree of joint
stationarity correlation estimates should not jump around too much even for small
sample sizes. On the other hand if correlation estimates are highly unstable thisisa
sure sign of non-joint stationarity. So, whilst it is always possible to calculate a
number based on some formula or model for correlation, it does not aways make
sense to do so.

It may also be that correlations appear quite high for along period, even when they
are spurious. For example contemporaneous data on live hog spot prices and crude oil
prompt futures may be available from NYMEX, and correlations estimates could be
calculated. But it is probable that little underlying causal relation exists between live
hogs and crude ail, except perhaps in transportation costs. Their returns are unlikely
to be jointly stationary, but correlation cal cul ations according to some methods might
result in apparently high and stable correlations.

The next section shows how the most common correlation estimates of all, the equally
weighted ‘historic’ correlations, will have apparent stabilities that are, in fact, just an
artefact of the estimation method. Using a more appropriate correlation model, such
as an exponentially weighted average or a GARCH model, would reveal greater
instabilities in correlation, particularly if returns are not jointly stationary.

But then, if unconditional correlations do not exist because returns are not jointly

stationary, and if conditional correlations are jumping around all over the place, what
can be done to hedge correlation risk? In the absence of a correlation futures contract
based on equally weighted averages it may be better to look for alternative measures

of comovements between assets. For example, it would be possible to base hedging
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strategies on the cointegration error correction models of asset prices that are
introduced at the end of this chapter.

EQUALLY WEIGHTED MOVING AVERAGES

Unbiased estimates of unconditional correlation are usually calculated by a weighted
moving average, with either equal or exponential weighting. A standard method based
on (1) isto estimate variance as aweighted average of squared returns and to divide
the covariance, estimated as a similarly weighted average of cross products of returns,
by the square root of the product of the variances.

Consider for example the WTI crude oil spot* and NYMEX near futures prices shown
in figure 1. They should be very highly correlated because the maor price changes
arise from supply constraints, such as the Gulf crisisin 1990/1991, rather than
demand fluctuations. Thisisin marked contrast to the natural gas market that is
discussed in box 1.

However, crude oil spot-futures correlations are also quite variable, because the
market has oscillated between backwardation and contango during the course of the
decade (see box 2). Fluctuations in the convenience yield arise as perceptions of
inventory and financing costs change, and these perceptions are governed by micro
and macro economic factors that can vary considerably between the different players

in the oil market (refer to excellent discussion in chapter on forward curve).

! Spot is the 1st Month Cushing until the future's expiry, then the 2nd Month Cushing until the 25th,
then back to the 1st Month Cushing
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Figure 2 shows correlations between spot and futures crude oil prices calculated using
equa weighting over 3 months, 6 months, 1 year and 2 years. The longer the
averaging period, the more stable correlations appear to be. Thisis because the
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pronounced effect on correlations that aways follows an extreme event in the markets
will last for exactly n-days, where n is the length of the averaging period.

For example on 17" January 1991 when spot and future prices dropped from about
323% to about 22$ overnight with the outbreak of war in the Gulf, equally weighted
correlations increased substantially by an amount in inverse proportion to the length
of average. On 18" January 1991 the 3 month correlation rose from 0.8 to 0.91,
staying above 0.9 until 17" April 1991 when it jumped down from 0.94 to 0.83. The 2
year correlation jumped from 0.81 to 0.86, staying at around this level for exactly 2
years, long after the other averages had returned to more realistic levels. But nothing
special happened on 17" April 1991, or on 18" July 1991 or 1 year or 2 years after the
outbreak of the Gulf war. The sharp declines in correlation measures on these dates

are just an artefact of the estimation method.

These ‘ghost’ effects of extreme events on correlation are less intense but longer
lasting, as the averaging period increases. So if equal weighting isto be applied for
measuring correlations and hedge ratios there is a case for ignoring extreme events.
Otherwise they can bias estimates for along time after the event occurred.

EXPONENTIALLY WEIGHTED MOVING AVERAGES

One of the advantages of using exponential rather than equal weighting is that shocks
to correlation die out exponentially, at arate determined by the smoothing constant.
Exponential smoothing takes the form

s

@-1)al™ x,

i=1
where 0<| < 1. Another time seriesis created, the exponentially weighted moving
average (EWMA) that is ‘smoother’ than the original. The degree of smoothing is

determined by the size of the smoothing constant | .
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To calculate an exponentialy weighted correlation, take three EWMASs with the same
value of | . First calculate each of the two returns variances by smoothing the squared
returns in each market. Then calculate the EWMA covariance, so that x isthe cross
product of returns, and finally divide this by the square root of the product of the two

variances.

Exponential weighting is a simple method of measuring correlations that has
advantages over both the ‘historic’ equally weighted averages and the more technical
GARCH models that are introduced in the next section. But the big question with
exponential weighting is which value of | should be used? The larger is| , the
smoother the correlation becomes because observations far in the past still effect the
current average. The smaller is| , the more responsive the correlation to daily moves

in the markets.

There is no one best method for optimising the value of | . The examplesin this
chapter all take the RiskMetrics| value of 0.94. In fact the exponentially weighted
moving average (EWMA) with | =0.94 has a half-life of about 30 days, so its
variability is similar to that of the 30 day equally weighted moving average (see figure
3). The main difference between the two methods is that the equally weighted
measure has 30 day ‘ghost’ effects, whereas shocks die out exponentially in the
EWMA. It would therefore be more redlistic to base spot-futures or forward curve
arbitrage on exponentially rather than equally weighted correlation estimates.
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Figure 3 shows the exponentially weighted correlation between spot and prompt
future prices of crude oil using the RiskMetrics smoothing constant | = 0.94.2 It is
quite evident from figure 3 that these estimates are more unstable then those in figure
2. But in both figures it is the same correlation that is being estimated.

2 A review of the RiskMetrics data and alternative covariance matrices may be found in Alexander
(1996).
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Exponentially and equally weighted moving average correlation measures are all
estimating the same thing, the constant unconditional correlation that is assumed by
the weighted average model. So how can it be that so many different results are
obtained from estimating correlation on the same data? A generic problem with
correlation estimation is that wildly different results may be obtained, depending on
the time period of the data and the estimation method used.

For any given model, be it an equally weighted average over afixed number of days,

or an exponentially weighted average with some value for | , the variation in results at
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different time periods can only be attributed to ‘noise’ arising from differencesin
samples. There is nothing else in these models to explain time variation in correlation.

When correlation estimates are found to be unstable the constant correlation
assumption that underlies weighted average correlation measures should be
guestioned. Conditions in many energy markets may not be conducive to joint
stationarity. For example the correlations between NY MEX sweet crude futures of
various maturities can be very unstable, particularly when there are big differencesin
trading volume and open interest (box 2).

Readers interested in statistical tests for joint stationary are referred to standard
econometrics texts such as Hamilton (1994). They are based on the eigenvalues of
coefficient matrices from a vector autoregressive model: if they lie within the unit
circle the series are jointly covariance stationary.® But it should not really be
necessary to go into such details: if correlations are found to be unstable, returns are
unlikely to bejointly stationary. In this caseit is not correct, strictly speaking, to use a

model based on constant correlation, such as the weighted average models that have
been discussed above.
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% Hence the term ‘ unit root’ to indicate non-stationarity.
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GARCH

Generalised autoregressive conditional heteroscedasticity (GARCH) models extend
the constant ‘unconditional’ model to time varying ‘conditiona’ (or instantaneous)
parameters of returns distributions. Although GARCH estimates are based on atime-
varying correlation model and EWMA estimates are not, they are quite similar. In fact
the EWMA isasimple integrated GARCH model without a constant term.

When it comes to modelling volatility, GARCH models have many advantages over
EWMA. In particular:

(8) GARCH parameters are estimated independently and optimally using maximum
likelihood. In the EWMA model the reaction and persistence coefficients, | and 1-
| respectively, are constrained to sum to one. Also there is no one optimal
technique for estimating the parameter of an EWMA,;

(b) The GARCH stochastic volatility model gives convergent term structure forecasts,
whereas the EWMA model assumes constant volatility. The EWMA isjust an
estimate, not aforecast. It is assumed that current levels of volatility will persist

forever (the ‘sguare root of time’ rule), which is rather unrealistic.
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GARCH may aso be used to estimate and forecast correlation, but with much less
success. The multivariate GARCH model introduced in chapter * may be used to
obtain conditional correlation estimates that supposed to be time-varying, because
they are based on the assumption of stochastic rather than constant correlation. So the
variation in correlation through time is part of the model, and not just ascribed to
‘noise’, asit is with weighted average models.

But whereas GARCH volatility models are easy enough to implement, multivariate
models often experience convergence problems. Thisis because the likelihood
function becomes very flat and difficult to optimise as the number of parameters
increases. The bivariate BEKK model has 11 parameters compared to the 3
parameters of a symmetric univariate GARCH, so often parameters are imposed.

For example the diagonal vech multivariate GARCH described in chapter * has only 9
parameters, but it assumes that the cross market effects are zero which is not very
realistic. The multivariate GARCH volatilities and correlations that are estimated
depend very much on the parameterisation chosen, and it is extremely difficult to
determine which is the best GARCH model.

Given the uncertainty in correlation estimates, and the difficulty with doing anything
else but assume the current correlation estimate is the forecast, the advantages of
multivariate GARCH are nothing like as clear as those of univariate GARCH.
Readers that wish to find out more about the subject have a huge literature to choose
from. See for example the surveysin Bollerslev, Chou and Kroner (1992), Bollerslev,
Engle and Nelson (1994) and Alexander (1998).

To summarise the correlation models introduced here, the simple weighted average
methods are easy to implement and are recommended for use in different
circumstances, and for different reasons. Long term equally weighted averages can
provide a good indication of the average correlation over alarge number of months,
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and preferably years. But for short term correlation, exponentially weighted moving
averages are recommended because they are similar to GARCH estimates and do not
suffer from the ‘ghost’ features of equally weighted averages following extreme
market events.

Some Applications of Correlation

Severa of the chapters in this book describe the type of products being traded in
energy markets, why they are traded and by whom, and the growth in volumes on
such markets. So there is no need (and no space) to reiterate these discussions here:
instead this section focuses on the way correlation effects the pricing of hedges,
spreads and multi-asset options.

What should be done if atrade is based on a correlation that does not materialise?
Even when energy markets are sufficiently liquid to admit correlation hedging, these
correlations may be too unstable for hedging to be effective. In some cases the short
term equally weighted averages or exponentially weighted averages jump around all
over the place, and the long term averages will be very misleading for some time after
an extreme event in the markets. It is therefore very important to conduct a thorough
empirical testing of any model in which derivative prices are affected by correlations,
to assess how redlistic is the correlation measure.

SPREADS
A spread is afirst order correlation product, so called because correlation has a direct
influence on price through the volatility of the spread. Spread volatility, which is

based on the formulas?®,, = s +s?% - 2rs,s, islowest when underlyings are
highly correlated.
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For example consider the spread between the Kansas City "Western" KCBOT, and
the NYMEX natural gas future contracts. The NYMEX has aways traded at a

premium, as shown by the positive spread in figure 8.

When the KCBOT was first introduced both volume and volatility were very low
relative to the NYMEX. But asthe KCBOT contract trading volume increased so did
their relative volatility and the spread decreased substantially. In recent years their
correlation has been very high and stable: although the KCBOT closes later, trading
on this contract after the NYMEX has closed is till very thin. Consequently spread
volatility is now relatively low and this affords a certain degree of predictability in the
spread.

Figure 8: NYMEX - KCBOT Spread and EWMA Relative
Volatility
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However close the contracts appear to be, caution should always be exercised when
equally weighted correlation measures are used. The exponentially and equally
weighted correlations shown in figure 9 were indeed very similar during the second
half of the data period. But in the earlier days of the KCBOT, the use of equally
weighted correlations created some misleading measures.
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A small decoupling on asingle day will effect the 30-day correlation for exactly 30
days, as for example following the sharp decrease in the spread and increase in
relative volatility on 26" March 1996. Then 30 days later, on 9" May 1996, the 30-
day correlation fell from 0.94 to 0.74, although nothing particular happened in the
market on that day. It isjust an artefact of the equal weighting of historical data.

These effects are not apparent with the exponentially weighted correlation measure.

Figure 9: EWMA and 30-day Correlation of NYMEX-KCBOT
Prompt Futures
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Traders that are fully hedged over along period of time often wish to take advantage
of short term profits or losses arising from movements in the spread. Such trades are
usually based on the assumption that the spread is a stationary (mean-reverting)
process. Of course many spreads are stationary, time spreads and crude spreads in
particular. In that case not only will spread trading be relatively predictable, but also
spread options will be reasonably cheap since the high correlation between prices
serves to decrease spread volatility.
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But in some energy markets there is empirical evidence that certain spreads are non-
stationary. For example, on crack spreads that are heavily traded by refiners,
speculators and arbitrageurs alike, market efficiency may result so that spreads
become random walks (see figure 8 in chapter ** on the oil market).

But when spreads are not stationary the unconditional variance is infinite, the standard
formulafor spread volatility will not be valid, and univariate statistical models of non-
stationary spreads will have little forecasting power. However it may be possible to
use cointegration between related spreads to build an error correction model for
trading, as explained in the next section.

HEDGING

Hedging is a very uncertain activity in energy markets, given the unique supply and

demand structures that frequently decouple the spot price from prices of futures and

forwards, and given the extreme volatility and unstable correlations that are inherant
in these markets. Some producers may be unwilling to hedge at al, but there are till
very many players, from end-users to speculators and arbitrage traders, that have

created a large and growing demand for energy derivatives.

When hedging x with a single product y, hedge ratios are defined multiplying
correlation by the relative volatility:

COV(Rx,t, Ry,t)/ V(Ry,t) = Corr(RX‘t, Ry,t)dV(Rx,t)/ V(Ry,t)) (2)

Or in alternative notation b = sx,/s,” = (Sx/Sy). So when the correlation is close to

1, the hedge ratio is the relative volatility of the underlying with respect to the hedge.

Since hedge ratios depend on correlation, they may also display features that are
purely artefacts of the model used to measure correlations.
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For example if equally weighted averages are used, one would see ‘ghost’ effectsin
hedge ratios just as one does in correlation. These are evident in figure 10, which
shows exponentially weighted and 30 day equally weighted hedge ratios for hedging
the Western gas Kansas City contract with NYMEX prompt month futures.

Figure 10: EWMA and 30-day Hedge Ratios for NYMEX-
KCBOT Prompt Futures
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MULTI-ASSET OPTIONS

There are many products on related energy markets that are tailor made for end-users
and producers alike. Energy producers that are exposed to many commodities will
hedge revenues with basket options that are cheaper than buying options on individual
markets. ‘Best of’ options allow end users to purchase energy supply at either the gas
price or the oil price (say), which ever is better®. Long term swaptions and options on
related markets diversify the risks from hedging all costs with derivatives based on a
single market. Currency protected products alow the purchaser to hedge all foreign

exchange risk, and derivatives for end-users can be based upon several indices.
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The prices of these products depend to a greater or lesser extent on cross market
correlations. Many of these derivatives are second order correlation products, so
called because correlation has a lesser effect on price, affecting it only through
changes in discount rates rather than directly through volatility.

For example, the price of a currency protected derivative depends on the * quanto’
correlation between the underlying and the exchange rate, but only in so far as it
changes the discount rate in the Black-Scholes formula.

Although these quanto correlations are likely to be low, they can also be very
unstable. But the instability of cross market correlations is not so much of an issue
with second order products. It isthe first order correlation products that will be very
difficult to price when correlation is unpredictable.

Consider for example a basket option on crude oil and natural gas near month futures.
The basket option should be cheaper than buying separate options on each underlying,
because basket volatility is related to the volatility of individual options as %, =

(sx + sy)2 - 2(1- r)sxSy. Thus the basket volatility is less than the sum of individual

volatilitiesunlessr = 1.

Figure 11 shows equally weighted correlation measures between NY MEX prompt
futures on crude oil and natural gas. The longer term correlationsin figure 11 are very
small, in the region of 0.1 to 0.2, so long term basket options on natural gas and crude
oil should be relatively cheap. But, amongst other factors, differencesin settlement
dates and procedures across different markets produce highly unstable short term
correlations, as for example in the 30 day correlation in figure 11. So even though
they may be cheaper, prices of short term basket options will be subject to great
variability.

* Price depends on correlation through the volatility of the price ratio (not the ratio of price volatilities)
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Figure 11: Equally Weighted Correlation Measures of Natural
Gas and Crude Ol
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Introducing Cointegration

The classic paper on cointegration by Engle and Granger (1987) engendered a
revolution in applied economic methods. Cointegration has emerged as a powerful
technique for investigating common trends in multivariate time series, and provides a
sound methodology for modelling both long run and short run dynamicsin a system.

Although models of cointegrated financial time series are now relatively common
place in the literature their importance has, until very recently, been mainly
theoretical. Thisis because the traditional starting point for risk management isa
correlation analysis of returns, whereas cointegration is based on the prices
themselves.
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In standard risk-return models the price data are differenced before the analysisis
even begun, which removes a-priori any long-term trends in the data. Of course these
trends are implicit in the returns data, but in correlation models any decision based on

long-term common trends in the price datais excluded.

Cointegration extends the traditional model of correlation to include a preliminary
stage in which the multivariate price data are analysed for long run equilibria called
‘cointegrating vectors'. Then in adynamic correlation model called the ‘error
correction model’ (ECM) the causal flows between returns are investigated.

Lack of space requires that only a ssimplistic version of the theory is presented here,
but the more general theory is more than adequately covered in standard econometrics
texts such as Campbell, Lo and MacKinlay (1997), Hamilton (1994) and Hendry
(1995, 1996).

Two price processes are cointegrated if there is alinear combination of these prices
that is stationary, and any such linear combination is called the ‘ cointegrating vector’.
The cointegrating vector is a spread, often taken to be a difference in log prices so that
the error correction model is based on returns. So generally speaking when spreads
are stationary prices are cointegrated. Of course prices may deviate in the short term,
and correlations may be low at times, but they are ‘tied together’ by along term
common trend because of the mean-reversion in the spread.

Spot and futures prices are cointegrated when the basis is mean-reverting. Related
commodity prices may be cointegrated if costs of carry are well behaved, but that is
not always the case. Cointegration arises naturally in many other financial markets:
equities within an index, along or between yield curves, in currency systems and
between international market indices. The interested reader may consult Alexander

(1999) and the references there for more details.
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Box 3 analyses cointegration and error correction models in the crude oil market. This
serves both to introduce some basic concepts in cointegration and to analyse how
dynamic relationships can behave in energy markets. Although spot and prompt future
prices are taken in this analysis, similar methods could be applied to any pointsin the
term structure, to related non-stationary crack spreads, and indeed to any energy
markets that have common stochastic trends.

Before commencing cointegration analysis the non-stationarity of data should be
established. There are many statistical tests for stationarity described in the
voluminous econometric literature on unit root tests. The test described in Phillips and
Perron (1988) is perhaps the most appropriate given the fat-tailed nature of energy
markets. But for smplicity only a basic test is described here.

The augmented Dickey-Fuller (ADF) statistic is based on aregression of Dx on a
constant, one lag of Dx and one lag of x, where D denotes the first difference. Thet-
ratio on the lag of x isthe ADF statistic, which has a 5% critical value of —2.88 and
1% critical value of —=3.5. If the ADF exceeds the a% critical value then x is
stationary at the a% level. (see Alexander and Johnson, 1994, Dickey and Fuller,
1979 and MacKinnon, 1994). Results of ADF tests on crude oil price data are shown
in box 3.

The next step in cointegration isto establish that a ‘ cointegrating vector’ exists
between related price series. Thisis alinear combination of non-stationary prices that

IS stationary.
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In the simple case that only two series are considered, one would perform aregression
of one log pricey on the other log price x and then test the residual for stationarity. If
the residuals indicate that the error process is indeed stationary, then the cointegrating
vector isz =y —bx where b is the regression coefficient. This is the method proposed
by Engle and Granger (1987). For more details on this and other methods see
Alexander (1999).

Thefinal step isto estimate an error correction model (ECM) on returns, which may
have quite a complex lag structure. If only the first lags are used the ECM takes the

simple form:
Ry=ao+ai Ru(-1) + a2 Ry(-1) + az z(-1) + &

(€©)
R, = bo + by Ry(-1) + by R/(-1) + ba (-1) + &

© Risk Publications 29



Managing Energy Price Risk (2™ Edition) RISK Publications pp291-304 (1999)

The ECM is the mechanism that ties cointegrated series together in the long run. It
takes its name from the fact that a3 is positive and bs is negative. Thusif the
cointegrating vector z is above (below) its equilibrium value, next period price of x
will tend to increase (decrease), the price of y will tend to decrease (increase) and
both serve to reduce the size of cointegrating vector.

The ECM may be used to analyse ‘ Granger’ causality, which must be present in
cointegrated series. Granger causality means that turning points in one series lead
turning points in the other (Granger, 1988). If the ECM coefficients a, and/or as are
significant, there is adynamic causality fromy to x. If the coefficients b; and/or b3
are significant, thereis a causality from x to y. Granger causality between crude oil
spot and futuresisinvestigated in box 3.

In many financial markets there may be a case for ‘price discovery’ where futures
prices lead spot prices (for example see Bopp and Sitzer 1987, Schroeder and
Goodwin 1991, Schwartz and Laatsch 1991, Schwartz and Szakmary 1994, Wang and
Y au, 1994).

But the relationship between spot and futures prices in energy markets is quite unique,
as is demonstrated by the cointegration analysis of crude oil pricesin box 3. For
example in equity indicesit is the future that is actually traded - completely the other
way around to energy markets where only spot prices govern the physical delivery.

The information that is revealed in a dynamic correlation model, such as an error
correction model, should be very useful for short term trades in and between many
other energy markets. All the methods described here may be implemented in
statistical packages such as Excel, so readers are invited to experiment.
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